
Woongki Baek, Richard Yoo, and Christos Kozyrakis
Pervasive Parallelism Laboratory

Stanford University

 Transactional memory
◦ What: declare code sections as transactions
◦ How: underlying system tries to concurrently execute

transactions (atomic and isolated)

 Transactions may abort due to contention
◦ For efficient transaction execution, the system must

control the concurrency

 Concurrency controller
◦ Adaptively controls the system-wide concurrency
1. Contention managers: determine priority after conflict
2. Adaptive scheduling: try to predict contention

Yoo, Txn NACKs March 17, 2013 2

 An efficient concurrency controller requires
low-level run-time information
◦ E.g., dependencies among transactions, and system

utilization level

 Challenges
◦ Need to obtain such information in a timely fashion

◦ Leverage existing hardware features to lower cost

 Utilize transactional NACKs

Yoo, Txn NACKs March 17, 2013 3

 Cache coherence: used to deny unsatisfiable coherence
requests

 TM systems with eager conflict detection: used to signal
transactional conflicts
◦ E.g., NACK request to a transactionally accessed line

 NACK messages

◦ Detailed dependency information / system utilization level
◦ Already implemented in many TM systems (cheap)

1 2
EX_REQ

ACK NACK
Retry / Fallback

Time

Yoo, Txn NACKs March 17, 2013 4

 Previous work: use NACK for non-busy waiting [zilles’06]
and conservative deadlock avoidance [moore’06]

 We propose 3 novel NACK use cases that enable enhanced
concurrency control

Use Case Concurrency Control

Accurate Deadlock
Detection

Aggressive Stalling

Dependency Tree
Construction

Dependency Chain
Cutting

Carrier Sensing Exponential Backoff w/
Overshoot Avoidance

Yoo, Txn NACKs March 17, 2013 5

 On conflict, eager conflict detection TMs stall the attacker
◦ Risks deadlock: implement conservative deadlock avoidance

 Abort the transaction when there is a possible deadlock

◦ False positives may degrade performance

2

3

Time
NACK

if elder txn
set possible_cycle = 1

NACK

1

stall

Yoo, Txn NACKs March 17, 2013 6

Conservative Deadlock Avoidance on LogTM

if elder txn
is possible_cycle = 1?

 Arbiter snoops NACK messages and updates wait-for table
◦ (i, j) => is P_i (attacker) stalling for P_j (defender)?
◦ When P_i commits or aborts, clear row / column i

 Wait-for table encodes wait-for graph
◦ Hardware can walk the table to detect deadlock
◦ Distributed / low cost implementations are possible [shiu’01]

Wait-For Table

Wait-For Graph

0 0 0 0

0 1 0 0

0 0 1 0

1 1 0 0

0 1

2 3

Defender

A
tt

a
c
k
e
r

0

1

2

3

0 1 2 3

“P_0 NACK P_1”

1

Yoo, Txn NACKs March 17, 2013 7

 For TM systems w/ eager conflict detection
◦ NACKing requests = fine grain locking
◦ Stalling a single attacker may stall large number of txns
◦ Avalanche effect: other transactions will soon get stuck

 Better off abort highly depended transactions
◦ Need to know the # of both direct / indirect dependents

…

…

Read C

…

Write B

Write C

Write A

…

…

Read B

…

Read A

Cascaded Stalls of Transactions

T1: Defender

T2: Attacker
Abort?/Stall?

T3

T4

Yoo, Txn NACKs March 17, 2013 8

 Use NACK to track dependency relationship
◦ Each transaction records the dependency as bit vector

◦ Propagate the bit vector through coherence messages

◦ Based on the info determine whether to abort / stall

…

…

Read C

…

Write B

Write C

Write A

…

…

Read B

…

Read A

Cascaded Stalls of Transactions

T1: Defender

T2: Attacker
Abort?/Stall?

T3

T4

0001

0011

Yoo, Txn NACKs March 17, 2013 9

 Exponential backoff
◦ On abort, exponentially increase retry interval
◦ Good: quickly escape contention
◦ Bad: system is underutilized (overshoot)

 Avoiding the overshoot problem
◦ Monitor system utilization and early terminate backoff

 Borrow carrier-sensing technique from
communications
◦ Measure number of snooped NACK messages per period
◦ Use that as an indicator for system utilization
◦ Can be implemented w/ performance counter interface

Yoo, Txn NACKs March 17, 2013 10

 Execution-driven simulator
◦ 16 x86 cores, core private L1, shared L2
◦ Assume a shared bus interconnect
 Can be generalized to directory-based environment

 Eager conflict detection HTM [moore’06] (LogTM)
and hybrid TM [minh’07] (eager SigTM)
◦ Both use NACK to handle conflict detection / stalling

 Work in progress
◦ Results from Genome, Kmeans, and hash table
◦ Plan to experiment on more workloads / larger system

Yoo, Txn NACKs March 17, 2013 11

 On HTM, use ADD to
perform aggressive
stalling
◦ Transactions

aggressively stall, unless
arbiter overrides to abort

◦ Baseline: conservative
deadlock avoidance

 Many transactions
eventually commit
◦ Aggressive stalling

reduces aborts by 20.5%
◦ Improved load balance
◦ 9.9% performance

improvement

March 17, 2013 Yoo, Txn NACKs 12

0

0.05

0.1

0.15

0.2

0.25

0.3

Conservative
Avoidance

Accurate Detection

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

 (
Si

n
gl

e
 T

h
re

ad
)

Violation

Commit

Idle/Synch

Busy

Effect of Aggressive Stalling on Genome

Time doing useful
work

Barrier wait / synch

Time spent on abort

 Enhance HTM to maintain
/ propagate dependency
bit vectors

 Implement dependency
chain cutting mechanism
◦ Abort attacker if #

dependents >=
cutThreshold

 10% performance
improvement at
cutThreshold = 1
◦ Baseline: conservative

deadlock avoidance

March 17, 2013 Yoo, Txn NACKs 13

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

baseline cutThreshold=1

cutThreshold=2 cutThreshold=4

Effect of Dependency Chain Cutting on
Hashtable

 Breakdown of aborts
1. Those induced by

conservative deadlock
avoidance

2. Proactive dependency
chain cutting

 Overall performance
shows high correlation
to # aborts
◦ Injection of chain cuts

reduces total # aborts

March 17, 2013 Yoo, Txn NACKs 14

Abort Breakdown on Hashtable

0

200

400

600

800

1000

1200

1400

1600

1800

2000

To
ta

l A
b

o
rt

s

Deadlock-Induced Aborts Chain Cuts

 3 backoff schemes on
hybrid TM
1. Exponential Backoff (EB)
2. EB w/ Carrier Sensing
3. Linear Backoff (LB)

 Carrier sensing reduces

wasteful backoff
◦ Side effect: less load

imbalance
◦ 21.5% improvement

compared to EB

 EB-CS matches LB
◦ Kmeans transactions

exhibit short, bursty
contention

◦ Best of both worlds

March 17, 2013 Yoo, Txn NACKs 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

EB LB EB-CS

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

 (
Si

n
gl

e
 T

h
re

ad
)

Backoff

WB

RB

Violation

Commit

Idle/Synch

Busy

Impact of Backoff Schemes on Kmeans

Read / Write Barriers

Software Backoff

 TM concurrency controllers require low-level
information
◦ Dependencies among transactions
◦ Utilization level of the system

 NACKs can be used to efficiently collect such info

1. Accurate deadlock detection
2. Dependency tree construction
3. Carrier sensing
◦ Enables advanced concurrency control

 Future work
◦ Evaluate performance with more workloads / larger system
◦ Investigate hardware complexity and overheads in detail

March 17, 2013 Yoo, Txn NACKs 16

 Pervasive Parallelism Laboratory
◦ http://ppl.stanford.edu/

March 17, 2013 Yoo, Txn NACKs 17

http://ppl.stanford.edu/
http://ppl.stanford.edu/
http://ppl.stanford.edu/
http://ppl.stanford.edu/

[zilles’06] C. Zilles and L. Baugh. “Extending hardware
transactional memory to support nonbusy waiting
and nontransactional actions.” In TRANSACT 2006.

[moore’06] K. E. Moore et al. “LogTM: Log-based

transactional memory.” In Proceedings of HPCA 2006.

[shiu’01] P. H. Shiu, Y. Tan, and V. J. Mooney III. “A

novel parallel deadlock detection algorithm and
architecture.” In Proceedings of CODES 2001.

[minh’07] C. Cao Minh et al. “An effective hybrid

transactional memory system with strong isolation
guarantees.” In Proceedings of ISCA 2007.

Yoo, Txn NACKs March 17, 2013 18

