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Abstract
Transactional memory is a concurrency control mechanism that
aims to simplify the development of parallel applications in the
times of ever-increasing core counts of multi-processor architec-
tures. At the same time, it must support the application to achieve a
high level of performance and scalability to justify it as an alterna-
tive to classical lock-based synchronization. These claims still lack
a broad validation in the field because the high number of proposed
transactional memory algorithms are evaluated using only a small
variety of existing benchmark applications.

In this paper, we introduce DREAM, an extensible benchmark
framework for processing live updates to large graphs using trans-
actional memory. It represents real-world workloads from the do-
main of data stream processing. Popular social networks, like Face-
book, Twitter or Google+ have increased the economical interest in
computing on large graphs. However, social networks are scale-free
- i.e. their degree distribution follows a power-law: The majority
of edges connect to the minority of vertices, which makes compu-
tations on these networks hard to scale. On the other hand, “Big
Graphs” don’t necessarily mean “Big Data”. Even huge networks
can be processed efficiently on a single machine, especially when
done in parallel.

We currently support in the DREAM framework two opera-
tors that implement standard graph algorithms which operate on
streamed updates: community of interest and community detec-
tion based on label propagation. However, DREAM is designed
very modular and new algorithms can be added straightforward
by implementing them as new operators. We evaluate the use of
DREAM with well-known software transactional memory imple-
mentations.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.8 [Software Engineering]:
Metrics–performance measures

General Terms Measurement, Performance, Experimentation.

Keywords Benchmarks, Transactional Memory, Concurrent Pro-
gramming.
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1. Introduction
System with processors that have multiples cores are now the de-
facto standard, even in embedded systems. These systems provide
the applications the potential for significant performance improve-
ments by exposing parallelism to the system, e.g., by spawing mul-
tiple threads. However, the development of parallel applications is
a difficult task. Their behavior must remain the correctness of the
sequential application while being efficient in parallel execution.
The development of multi-threaded applications requires a high ef-
fort for the synchronization of data accesses. Concurrency control
is typically achieved by augmenting critical sections with locks.
Finding the right balance for the lock granularity is an expert do-
main.

Transaction Memory (TM) [16] is a concurrency control mech-
anism that hides the hassle of implementing the synchronization
of applications away from developers. All data accesses within the
demarcations of a transaction are redirected to the TM. The TM
transparently introduces the synchronization from its underlying
algorithm to the application. Transactions atomically commit their
changes if no access conflicts were detected and the data consis-
tency is guaranteed. The parallel execution of transactions is iso-
lated from each other. In case of a conflict, the transaction is aborted
and all changes are reverted so they do not become visible exter-
nally.

A large number of algorithms has been proposed in the recent
years that implement TM either in software (STM) [9, 11, 13, 18,
29], hardware (HTM) [6, 17, 25] or hybrid in software and hard-
ware [10, 28]. The evaluation of these designs is based on a rel-
atively small number of benchmark applications that specifically
target TM [2, 5, 15, 20]. The existing benchmarks represent only a
subset of all application domains and workload types that are rele-
vant for TM. Our goal is to increase the variety of possible work-
loads. Therefore, we propose a new benchmark framework, called
Dresden Streaming Transactional Memory Benchmark (DREAM),
that allows a straightforward implementation of typical workloads
from the domain of data stream processing [1, 19]. DREAM sim-
ulates a single node of the stream processing system. The stream
processing node is modeled as a thread-pool that processes oper-
ators. The operators are stored in queues and a scheduler assigns
them dynamically to the threads for execution. The actual work-
load is implemented using one or multiple operators that execute
on the node.

Popular social networks, like Facebook, Twitter or Google+
have increased the economical interest in computing on large
graphs. In social networks, the fraction of individuals that have
just a few connections is significantly higher than the fraction of
individuals that have thousands or millions of connections. It is
easy to see that this is true in practice: Lady Gaga, for example,
currently has 32, 099, 427 followers on Twitter, while one of the
Authors has 8 followers only. Obviously, there are only a few ac-



counts like Lady Gaga’s on Twitter, but there are many “ordinary”
accounts with only a few followers. This property is called scale-
free and it has been shown that this is an important property of
every social network [24]. It defines that the degree distribution
in a graph follows a power-law. The degree of a vertex equals the
number of connections it has.
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Figure 1. Distribution of the edge-degrees in three real social
networks and two power-law distributions (p).

Figure 1 shows the degree distribution for three social networks.
The data is freely available through the Stanford Large Network
Dataset Collection (SNAP)1. Running parallel algorithms on top of
these graphs is difficult [14, 21] because it is hard to distribute the
load evenly for a good scalability. At the same time it has been
shown that such “Big Graphs” do not equal “Big Data” and even
huge networks can be processed efficiently on a single machine [21,
30]. We believe that this poses an interesting new challenge on
transactional memory implementations since contention will not be
distributed equally.

We believe that TM can play a key-role in helping statisticians
and others to run graph algorithms on large graphs efficiently: It
offers an easy-to-understand language construct which requires no
expert-knowledge when parallelizing sequential algorithms. How-
ever, the scale-free property of the input challenges the implemen-
tations of TM because the graph algorithms will have to access
(through reads and writes) a small fraction of the vertices signifi-
cantly more often than the majority of the vertices.

We developed two different operators using DREAM to ex-
pose scale-free workloads from the domain of data stream process-
ing. The operators currently support two standard graph algorithms
which operate on streamed updates: community of interest [7] and
community detection based on label-propagation [26]. New algo-
rithms can be added easily due to the modular design by imple-
menting them as operators in the processing model.

The rest of the paper is structured as follows: We introduce the
DREAM benchmark design and the implementation of the two
graph algorithms in Section 2. Section 3 contains an extensive set
of experiments which show the behavior of DREAM for current
TM implementations. The relation to existing TM benchmark ap-
plications is discussed in Section 4. Finally, we conclude this paper
in Section 5

2. DREAM Benchmark
Our goal is to provide a platform for the simulation of data stream
processing operators. Multiple operators reside on a single node
and are executed concurrently. The operators are stateful and the
state is shared among all operators. We focus on the maximum
utilization of the computing power of the node’s processors in
conjunction with transactional memory (TM).

The overall design is based on the following components:

1 http://snap.stanford.edu/data/index.html#socnets

• The data stream is processed by operators, which implement
the workload. Different kinds of operators exist that can be
used to implement for or while loops, thread barriers, exclusive
operations, etc. If the operators do not execute exclusively, they
can use TM to access the state.

• The operators are stored in a global queue until they are exe-
cuted. A scheduler dispatches the operators from the queue and
maintains their properties, e.g., an exclusive operation.

• A thread-pool of configurable size consists of the threads that
execute the operators that they get assigned by the scheduler.

• The data stream is located already in memory in our simulation.
It can be raw data that is generated randomly or read from files,
or preprocessed data, e.g., partitioned into batches. Reading the
data into memory can be implemented by special operators.

The actual workload that should be executed by DREAM is
implemented using one or multiple operators. The parallelization
is handled by the framework transparently when it maps the oper-
ators onto the threads. Thus, combining the operators with TM for
synchronization is very beneficial because it handles the synchro-
nization transparently. The operators are implemented as a function
in C++ and can be dispatched to the queue by assigning their func-
tion pointer to a job kind. The DREAM framework will call the
function when it gets scheduled, depending on the job kind, one or
multiple times and in isolation or in parallel.

We implemented two kinds of operators with standard graph al-
gorithms to compute communities of interest (see Section 2.1) and
community detection based on label propagation (see Section 2.2).

The operators contain transactions that protect the access to
the shared state. The instrumentation of the code is performed
automatically using the Dresden TM Compiler (DTMC) [6]. The
underlying interface to the TM allows to plug in a large selection
of TM implementations for the evaluation in Section 3.

2.1 Communities Of Interest
A basic observation in social networks is that individuals have a
“social fingerprint”: Their most important contacts. A consequence
of this observation is, that it is not necessary to store all the edges
of a vertex - just the ones that are important in the actual context.
Communities of interest (COI) [7] use this observation. COI applies
a top-k algorithm to the original graph to transform it into a COI
graph with a limit k of edges per node. For example, one can use
the length of phone-conversations to determine which contacts are
important or not [7]. In our previous work we used the amount of
bytes transferred between computers in the internet to determine
the importance of TCP-connections [32].

This can be very useful, since it (1) limits the amount of memory
that is needed to store a graph by limiting the amount of edges in the
graph and (2) permits us to tune the skew of the degree distribution
precisely. If k = ∞, then any algorithm, running on top of the COI-
graph, is subject to the scalability limitation, induced by the power-
law. In fact, in the case where k = ∞, the COI-graph equals the
original graph. If k = 1, then the graph is not scale-free anymore
and scalability is not limited by the nature of the input. Any k > 1
will increase the scale-free characteristic of the input.

We have already shown that COI can be computed on streaming
data [32]. The idea is to record a fixed-size window of input for
each vertex (see Figure 2). Once the window is full, the elements,
contained in the window, are merged with the COI of the corre-
sponding vertex. This procedure is re-executed as long as there is
more input to process.

The COI operator in DREAM takes as input a window of
maximal size w. The window can either be preprocessed data read
from a file and sorted by the source ID or gets generated randomly
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Figure 2. Illustration of the COI algorithm: The windows are
merged into the top-k entries that are ordered by a descending
weight.

according to the power law distribution. The operator finds the top-
k list that corresponds to the source ID using the COI table. It then
merges the entries of the window into the top-k list, which is sorted
in descending order by the weight. The weight is calculated as an
moving average based on the factor θ (see Section 2.3). Updating
the top-k is protected by transactions that either change the weight
or replace entire entries in the list.

2.2 Community Detection
Community detection in graphs can be done in several different
ways. One option is called label propagation (LPA) [26].
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Figure 3. Illustration of the LPA algorithm: A vertex decides on
the most frequent community and sends it to all its neighbor’s
inboxes.

This algorithm is executed in several iterations (see Figure 3)
and each step is implemented as an operator. On the first iteration,
every vertex in the graph chooses a unique community. This could
be, for example, initially its own id. Every vertex will then “send”
its own community to all its neighbors. This operator uses transac-
tions to synchronize the append operation on the inbox. On every
subsequent iteration, each vertex counts the different communities
it received from it’s neighbors in the previous iteration and selects
the community with the highest count as its current community. If
there is no clear winner in the counts, the vertices will select a ran-
dom label. The decision on a community is a private operation and
does not need any synchronization.

The idea is that densely connected clusters (i.e., communities)
of the graph will converge to a consensus eventually. The algorithm
terminates if, during the current iteration, no vertex had to change
its label.

2.3 Workload Characterization
The scale-free concurrency pattern of social graphs provides an
interesting workload for TM. It can be customized by a wide range
of configuration parameters that are summarized in Table 1. We

currently do not evaluate the feature set of TM, such as privatization
or irrevocability.

Parameter Description
num-threads Number of threads in the thread-pool

phases Select the executed operator(s): COI, LPA or
both

window-size Size of the time window that will be merged by
the COI operator

topk-limit Number of top-k entries maintained by the COI
operator

theta Defines how much a window entry influences
the weight in the top-k during a merge:
θ ∗weighttop−k + (1− θ) ∗weightwindow

file-input Select input streaming data from file (accessed
randomly or in chunks) or generate windows
randomly

file-name Input file with the edges of the graphs in format
<source target weight>
(default weight is 1 if not specified)

duration Runtime duration in milliseconds for the COI
operator when using random windows

number-max Largest ID for source and target for random win-
dow generation

power-law Power law distribution of the targets in windows
generated randomly

seed Seed for the random number generator

lpa-iterations The number of iterations after which the LPA
operator will be stopped if it did not terminate
earlier

Table 1. Overview of the configuration parameters for COI and
LPA operators.

The workload’s concurrency pattern is summarized in Table 2
and characterized as follows:

• The transaction length covers the total number of accesses to
memory, either read or written.

• The write-set size represents the number of updates to memory
and indicates if a transaction is read-only.

• The time spent in transactions characterizes the impact of TM
on the overall scalability of the operator.

• The level of contention shows the conflict probability that will
lead to an abort of a transaction.

With the DREAM benchmark, a wide range of concurrency
patterns can already be covered by the presented operators and
adjusting their parameters accordingly. The introduction of a power
law distribution into the workload can shift the level of contention
from a read-only pattern to a write dominated complex access
pattern.

The benchmark also allows the verification of the computed re-
sult. This is an important property for the comparison of the com-
puted results of underlying TM implementations with a sequential
golden run. For the COI operator, the verification is a comparison
of the top-k entries and for the LPA operator the computed com-
munities are compared.

3. Evaluation
We evaluate the DREAM benchmark using the following selec-
tion of current software transactional memory (STM) implemen-
tations: Two STM variants that are based on the lazy snapshot
algorithm [27]: TINYSTM [12] is based on a versioned array of



Concurrency Pattern COI operator LPA operator
Transaction description Merges an entire window into the top-k list of a single

source ID
Sends the current community of a single source ID to all
its neighbor’s inboxes. The neighbors are derived from the
computed top-k list of the COI operator.

Transaction length Directly results from the number of entries in the win-
dow (window-size) that are merged with the top-k
list (topk-limit). The maximum length is reached
if window-size entries have to be matched against
all topk-limit entries. In the minimal case, the
window-size entries are matching the first top-k entry.

The transaction length only depends on the topk-limit.
The transaction performs a lookup of the community and
performs an update of the target’s inbox.

Write-set size Only a few memory locations are modified when updating
the top-k list. The minimal size is a single update of the
weight. The maximum size results from a reordering of
the top-k list, which includes the removal from the old
position and an insertion at the position that corresponds
to the descending order.

The operator is write dominated. The size of the write-
set is equal to the number of entries in the top-k list
(topk-limit) because for each entry the community is
appended to the inbox.

Time spent in transactions Almost all time of the operator is spent in transactions.
Only the random generation of windows is a private oper-
ation.

Only sending the community is performed in transactions.
Computing the current community is a local operation on
partitioned data and requires no synchronization.

Contention It depends on the power-law distribution, the number
of target IDs number-max and the the topk-limit. A
high power-law setting will bound the majority of edges
to a minority of targets. This results in a shorter period of
recurrences of targets in the windows and thus a higher
probability of updates on the top-k list that can result in a
conflict. The overall level of contention is low because the
operator performs only few update operations.

It is derived from the power-law distribution and the
topk-limit of targets. A high contention level is reached
when the top-k entries are bound to a small number of
neighbors due to the power-law. The inboxes of these
neighbors will suffer from high level of contention when
all sources add their current community.

Table 2. Overview of the concurrency patterns for COI and LPA operators.

locks and operates either in write-through mode (WT), i.e., directly
updating to memory, or in write-back mode with encounter time
locking (ETL), i.e., buffering updates with eager conflict detec-
tion; and two STMs are based on a single versioned lock, either
exclusively directly updating memory (TML [8]) or performing
buffered updates and value-based validation (NOREC [9]). FAST-
LANE (FL) [31] uses a combination of pessimistic transactions that
run almost at native speed and speculative transactions that syn-
chronize using a lock array.

We used data-sets to simulate the stream that fit the prop-
erties of graphs in social networks at presented in Section 1.
The windows of window-size (W) is generated randomly. The
power-law (P) parameter allows to adjust the distribution among
the number-max (N) node IDs. The COI operator maintains a top-k
list of topk-limit (K) entries. While the generated data imitates
data, the DREAM framework is also able to read the data from
input files that capture real data from various networks. The Stan-
ford Large Network Dataset Collection2 offers a wide range of data
from social and other networks. We chose to generate the input
data randomly because it has similar properties as the real data
(see Figure 1) but allows to execute the application for user defined
durations.

We evaluate the following two scenarios: First, the data is fed
into the COI algorithm, which constructs a COI graph (see Sec-
tion 3.1). This simulates a monitoring of a social network, where
the graph does not change but updates are received at a high fre-
quency. Second, the LPA algorithm runs on the COI graph (see
Section 3.2). This scheme could be used, for example, to detect at-
tackers who create malicious or fake identities in social networks to
gain influence (e.g. click-fraud): It has been shown that these fake
identities often form a densely connected cluster which has only
very few connections to the remaining network [4].

2 http://snap.stanford.edu/data/index.html

For each of the scenarios we are interested in (1) the single
thread overhead compared to the sequential (Seq) throughput,
(2) the scalability that can be achieved by the underlying STM
implementation, and (3) the contention on the state introduced by
the parallel execution.

Our tests have been carried out on a dual-socket server with two
6-core Intel Xeon Westmere-EP X5650 running 64-bit Linux 3.5.
All 6 cores of a processor share the L3 cache. The CPU affinity was
configured such that the penalty of moving data between sockets
is as limited as possible, i.e., for up to 6 threads only a single
processor is used.

The DREAM benchmark was compiled with the DTMC open-
source TM C/C++ compiler [6]. In combination with the frame-
work that provides the thread-pool, queues and an operator inter-
face, this dramatically simplified the development. The implemen-
tation of the operators feels like sequential code and contains trans-
action demarcations around the state access inside the operator. The
parallelization is accomplish transparently for the programmer by
dispatching the operator to all threads in the thread pool and the
synchronization is handled by the STM.

3.1 Communities Of Interest
Figure 4 shows the throughput for the COI operator. The operator
is read dominated and after an initialization phase that fills the
top-k lists only the weights are updated and hardly any elements
are replaced due to the power-law distribution of the data. This
allows the majority of parameter settings to scale well with the
number of threads. In the first two graphs (P=1 N=1024 W=10
K=9 and P=1 N=32768 W=20 K=9), the size of the communities
is distributed equally among all possible target IDs. This prevents
a fast saturation of the top-k list and results in larger write-sets.

FASTLANE scales well for all cores of a single socket but
stagnates when threads are executed on two sockets because it
relies on extensive usage of a shared counter. ETL and WT scale
well for up to larger numbers of threads. NOREC outperforms
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Figure 4. Throughput in merged windows per second for the COI operator.
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ETL and WT in the first graph because it benefits from value-
based validation in the list updates. This is a hint that their internal
locking scheme produces too many false conflicts. TML scales
well when threads do not update memory concurrently but does
not advance significantly beyond the sequential baseline when only
a few concurrent updates are present.

Except for FASTLANE and TML, the STM implementations
require in average one processor with 6 cores to beat the sequential
throughput. This is due to the setup costs of the transaction and
the high bookkeeping overhead for memory accesses. FASTLANE
and TML reduce this overhead by omitting the bookkeeping of
undo information for rollbacks and can outperform the sequential
performance already with 2-3 threads.

Figure 5 shows the abort ratio for the COI operator. NOREC has
a very low abort rate but spends a large fraction of time waiting for
the global versioned lock. TML drastically increases in its abort
rate already for a few threads because only one transaction can
perform updates at a time and the others must abort. WT and ETL
both show a similar trend on a high abort rate level. FASTLANE
has a lower abort rate because one thread executes transactions
pessimistically, i.e., they cannot abort.

3.2 Community Detection
Figure 6 shows the throughput for the LPA operator. The operator is
write-dominated and hard to scale for smaller numbers of neighbor
IDs (N). When more threads are added the contention increases
and prevents further performance improvements. NOREC, ETL and
WT even decrease in throughputs in some situations with high
threads counts. Ideally, the throughput should stay on the level of
the sequential baseline under high contention. FASTLANE achieves
this for low thread counts but suffers when data is cached on both
sockets because the transactions are relatively small. The operator
provides a challenging synchronization workload.

Figure 7 shows the abort ratio for the LPA operator. All STM
implementation suffer from a high abort rate because according to
the power-law the threads try to append the community messages
to only a small number of inboxes. FASTLANE has a decreasing
number of aborts it implies per commit because it spends a large
fraction of time waiting for data being transferred between the
sockets.

While the overall scalability of the operator is limited, it pro-
vides a good stress test for the mapping from memory locations to
meta data.

4. Related Work
In this section we first present the most commonly used benchmark
applications that are employed to evaluate transactional memory
algorithms. Thereafter, we continue with an overview over the state
of the art in graph processing frameworks.

4.1 Transactional Memory Benchmarks
The synthetic intset micro-benchmarks perform randomly queries
and updates on integer sets implemented as a red-black tree, a
linked list, a skip list, or a hash set. Their workload can be specified
with the update-to-lookup ratio and the number of elements in the
set.

The realistic workloads from the STAMP [5] benchmark suite
consist of the following applications: bayes learns the structure of
Bayesian networks in a directed acyclic graph; genome performs
gene sequencing using hash sets and string search; intruder
emulates a signature-based network intrusion detection system
by matching packets against signatures stored in self-balancing
trees; labyrinth finds the shortest-distance paths between pairs
of points using breadth-first search; kmeans clusters a set of parti-
tioned points in parallel; ssca2 constructs an efficient graph data

structure using adjacency arrays; vacation emulates a travel reser-
vation system, reading and writing different tables that are imple-
mented as red-black trees; finally, yada performs mesh refinement
of triangles in a work queue. The STAMP applications spend most
time in transactions. The workload is partitioned by the number of
threads at the start of each parallel region. This works because of
the operations have an evenly distributed length.

The benchmark STMBench7 [15] adapted a workload that had
originally the intention to compare object-oriented database sys-
tems. It is based on a rich object-graph and a large set of operations
that access the graph. The operations can be classified into four
categories: (1) long traversals access a large subset of the graph,
(2) short traversals operate on random paths, (3) short operations
access only a random element or neighborhood in the graph, and
(4) modifying operations insert or remove elements or links in the
graph. The underlying data structure is highly regular and the op-
erations provide a high contention level. The distribution in the
object-graph is balanced. The traversal of the operations on the
graph is random but the properties of the graph are maintained dur-
ing modifications.

The Lee-TM [2] benchmark suite is based on Lee’s routing al-
gorithm that computes interconnections between electronic com-
ponents. It consists of an expansion phase that performs a breadth-
first search and a backtracking phase that does the shortest path
routing. It supports a wide range of transaction sizes and complex
contention characteristics and allows to verify the computed result
for correctness of the transactional memory implementation. The
data distribution depends on the input circuit layout but is bound
by the number of components that fit into the logic.

RMS-TM [20] is a benchmark suite consisting of seven real-
world applications from the domain of data recognition, mining and
synthesis: hmmsearch tries to match sequences; hmmpfam queries a
database for a sequence; hmmcalibrate performs a profile calibra-
tion using shared counters; apriori is a data mining algorithm on
data bases using a hash table; scalparc computes a decision tree
by partitioning data into subsets; utilitymine finds high ranked
items in a hash tree; and fluidanimate performs operations on
the boundaries of data partitions. The majority of the applications
does not spend all time in transactions and provides a very good
scalability.

4.2 Graph Processing Frameworks
There are powerful distributed graph processing frameworks. The
first one that had a major impact was Pregel [23]. The main chal-
lenge for distributed graph processing is, that most graph algo-
rithms do very small computations on a large number of vertices.
Moreover, it is often required to exchange information between ver-
tices (such as label propagation). To this end, it was necessary to
force a restricted programming paradigm onto the developers. In
Pregel, general graph algorithms have to be rewritten into vertex
programs - i.e. small functions which are scheduled by the frame-
work on every vertex. Thus, the programmer has to care about how
to effectively distribute an algorithm. This direction is further pur-
sued by Powergraph [14] which is based on Pregel.

In contrast, shared memory, multi-threaded graph processing is
in its infancy [22]. For example, the SNAP graph framework only
supports a limited set of graph algorithms which have been ex-
tended for parallel use [3]. Finally, GraphChi [21] shows impres-
sive performance but borrows the interface from Pregel and Pow-
ergraph and thus, requires the programmer to follow the same re-
stricted programming paradigm.
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Figure 6. Throughput in appended neighborhoods per second for the LPA operator.
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5. Conclusion
We have presented the Dresden Streaming Transactional Memory
Benchmark (DREAM)3, a framework that allows a straight for-
ward simulation of operators from the domain of data stream pro-
cessing. We evaluated current software transactional memory im-
plementations using two real-world workloads: a community of in-
terest operator and a community detection operator based on label
propagation. The benchmark is extensible to easily add new opera-
tors for the processing of stream updates to large graphs.

We are planning to add additional stream operators in future
work that cover additional workload characteristics. The unbal-
anced workload is a good candidate for an in-depth study of the
mapping of memory locations to ownership records in lock-based
transactional memory implementations.

References
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,

J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The
design of the borealis stream processing engine. CIDR, 2005.

[2] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. Luján, and
K. Jarvis. Lee-tm: A non-trivial benchmark suite for transactional
memory. In A. Bourgeois and S. Zheng, editors, Algorithms and Ar-
chitectures for Parallel Processing, volume 5022 of Lecture Notes in
Computer Science, pages 196–207. Springer Berlin Heidelberg, 2008.

[3] D. Bader and K. Madduri. Snap, small-world network analysis and
partitioning: An open-source parallel graph framework for the explo-
ration of large-scale networks. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pages 1 –12,
april 2008. doi: 10.1109/IPDPS.2008.4536261.

[4] Z. Cai and C. Jermaine. The latent community model for detecting
Sybils in social networks. In Proceedings of the 19th Annual Network
& Distributed System Security Symposium, Feb. 2012.

[5] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC
’08: Proceedings of The IEEE International Symposium on Workload
Characterization, September 2008.

[6] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Rivière.
Evaluation of amd’s advanced synchronization facility within a com-
plete transactional memory stack. In EuroSys ’10: Proceedings of the
5th European conference on Computer systems, pages 27–40, New
York, NY, USA, 2010. ACM.

[7] C. Cortes, D. Pregibon, and C. Volinsky. Communities of interest.
Intelligent Data Analysis, 6(3):211–219, 2002.

[8] L. Dalessandro, D. Dice, M. Scott, N. Shavit, and M. Spear. Trans-
actional mutex locks. In P. D’Ambra, M. Guarracino, and D. Talia,
editors, Euro-Par 2010 - Parallel Processing, volume 6272 of Lecture
Notes in Computer Science, pages 2–13. Springer Berlin / Heidelberg,
2010.

[9] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: Streamlining
stm by abolishing ownership records. In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 67–78, New York, NY, USA, 2010.
ACM.

[10] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear. Hybrid norec: A case study in the effectiveness of best
effort hardware transactional memory. In Proceedings of the sixteenth
international conference on Architectural support for programming
languages and operating systems, ASPLOS ’11, pages 39–52, New
York, NY, USA, 2011. ACM.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Pro-
ceedings of the 20th International Symposium on Distributed Comput-
ing (DISC), pages 194–208, September 2006.

3 http://tm.inf.tu-dresden.de/

[12] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP ’08: Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, pages 237–246, New York, NY, USA, 2008.
ACM.

[13] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed
Systems, 21:1793–1807, 2010.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In
Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12), Hollywood, October 2012.

[15] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: A benchmark
for software transactional memory. SIGOPS Oper. Syst. Rev., 41(3):
315–324, 2007.

[16] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd edition.
Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, December 2010.

[17] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, pages
289–300, May 1993.

[18] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer.
Software-transactional memory for dynamic-sized data structures. In
PODC ’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92–101, New York, NY,
USA, 2003. ACM.

[19] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. Kirchner,
and J. Klosowski. Chromium: a stream-processing framework for
interactive rendering on clusters. In ACM Transactions on Graphics
(TOG), volume 21, pages 693–702. ACM, 2002.

[20] G. Kestor, V. Karakostas, O. S. Unsal, A. Cristal, I. Hur, and M. Valero.
Rms-tm: A comprehensive benchmark suite for transactional memory
systems. In Proceedings of the second joint WOSP/SIPEW interna-
tional conference on Performance engineering, ICPE ’11, pages 335–
346, New York, NY, USA, 2011. ACM.

[21] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In Proceedings of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’12),
Hollywood, October 2012.

[22] A. LUMSDAINE, D. GREGOR, B. HENDRICKSON, and J. BERRY.
Challenges in parallel graph processing. Parallel Processing Let-
ters, 17(01):5–20, 2007. doi: 10.1142/S0129626407002843.
URL http://www.worldscientific.com/doi/abs/10.1142/
S0129626407002843.

[23] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
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