
From Locks to Transactional Memory: Lessons
Learned from Porting a Real-world Application

Alexandre Skyrme
Pontifical Catholic University of Rio de Janeiro

(PUC-Rio)
askyrme@inf.puc-rio.br

Noemi Rodriguez
Pontifical Catholic University of Rio de Janeiro

(PUC-Rio)
noemi@inf.puc-rio.br

Abstract
Lock-based constructs such as mutual exclusion and condition
variables are commonly employed for concurrency control, es-
pecially when preemptive multithreading with shared memory is
used. However, locks have received a fair amount of criticism, in
particular due to their complexity. Transactional memory has been
proposed as a simpler alternative to lock-based synchronization,
but it is still not clear what it takes to port existing real-world
applications developed with locks to use transactions instead. In
this paper we undertake the challenge of porting luaproc, an ex-
isting concurrent programming library for the Lua programming
language, to use transactions instead of locks for its internal syn-
chronization. We rely solely on the transactional memory support
included in the latest stable version of the GNU C Compiler Collec-
tion (GCC) for our research. We present the lessons learned during
the porting process, such as the need to use busy waits to replace
condition variables, as well as the results for a comparative per-
formance evaluation between the lock-based and the transactional
memory versions of luaproc, which show that the busy waits can
reduce performance in some test cases.

Categories and Subject Descriptors D [1]: 3

General Terms Transactional Memory, Mutual Exclusion, Con-
dition Variables, GNU C Compiler Collection, Shared Memory

Keywords transactions, locks, multithreading, Lua, luaproc, mu-
tex, condition, GCC

1. Introduction
A common concurrency model is to use preemptive multithreading
with shared memory, for communication and synchronization, and
locks, for concurrency control. Despite its popularity, this model
has been recurrently criticized [1, 15], in particular due to the com-
plexities associated with locks [19, 25, 26]. Among the cited prob-
lems with locks are the difficulty in reasoning about and debugging
concurrent programs that rely on lock-based synchronization, the
potential for deadlocks and race conditions that can lead to data
corruption, as well as the the lack of composability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TRANSACT ’13 March 17, 2013, Houston, Texas, USA.
Copyright c© 2012 ACM . . . $15.00

Transactional memory [11] has been proposed as an alternative
to lock-based synchronization. Since support for Hardware Trans-
actional Memory (HTM) is still limited [4, 20], Software Transac-
tional Memory (STM) [23] is more readily available as it offers bet-
ter portability. Transactional memory is supposed to be less error-
prone [22] and to have simpler semantics than locks. The ques-
tion, though, is: what does it take to use Software Transactional
Memory, at its present state, as a replacement for lock-based syn-
chronization in existing real-world concurrent programs? Related
work, with few exceptions [17, 21, 29], is mostly focused on using
standard benchmark suites to measure transactional memory per-
formance alone [5], on implementing parallel versions of sequen-
tial programs using transactional memory [8] from the start, and on
using transactional memory to fix existing concurrency bugs [28].

To answer that question, we take up the challenge of porting an
existing real-world concurrent program that was originally devel-
oped with lock-based synchronization to a version using transac-
tional memory instead. For that purpose, we chose the luaproc [24]
concurrent programming library for the Lua programming lan-
guage [13]. The luaproc library uses the POSIX Threads Library
(pthreads) and thus relies on typical lock-based constructs, such as
mutual exclusion and condition variables, to control concurrency.
It includes typical concurrency patterns that can be found on con-
current programs that use lock-based constructs, therefore it is a
sound choice for a case study. We take advantage of the Software
Transactional Memory support included in the latest stable GNU
Compiler Collection (GCC) version and use it as the foundation
for our research.

This paper is organized as follows. In Section 2, we present an
overview of related work. In Section 3 we present the target pro-
gram used in our case study, the luaproc concurrent programming
library, and explain how it controls concurrency. In Section 4 we
provide a summary of the transactional memory constructs sup-
ported by the GCC. In Section refsec:fromlocks we present some
remarks about our overall experience and lessons learned in port-
ing luaproc to use transactional memory instead of locks. In Sec-
tion 6 we show and discuss the results of a comparative perfor-
mance evaluation between the lock-based implementation and the
transactional memory-based implementation. Finally, in Section 7
we present some concluding remarks.

2. Related Work
Gajinov et al. [8] present a case study based on the implementation
of a parallel version of the Quake multiplayer game server using
transactional memory. Although they include a discussion about
some of the challenges they encountered, their focus is not on what
it takes to port a concurrent program that already uses lock-based
synchronization to use transactional memory; instead, they take a

sequential version of the game server and implement a parallel ver-
sion that is built to use transactional memory from the start. On the
one hand, this approach, which differs from ours, allows for more
flexibility to determine a parallelization strategy and consequently
to model synchronization. Also, they present a performance eval-
uation focused on execution times, frame rates and transactional
statistics. We, on the other hand, are less concerned with perfor-
mance and more concerned with contention and overall processor
use as compared with lock-based synchronization.

Zyulkyarov et al. [29] present a related case study that also uses
the Quake multiplayer game server. They discuss the process of
porting an existing parallel version of the game server that relies on
lock-based synchronization to use transactional memory instead.
Even though they take a similar approach to ours in investigating
how transactional memory compares with lock-based synchroniza-
tion, they use a different testbed to do so. The Quake multiplayer
game server is an application built for the very specific purpose of
serving game clients, its parallel version makes a distinctive use of
concurrency according to the game’s needs and tests must be car-
ried out in accordance to the game’s logic. Our testbed, luaproc, is
a concurrent programming library which allows us to experiment
with a broader range of concurrency usage patterns. Additionally,
luaproc is small enough (1,100 lines of code in 4 files) when com-
pared with Quake (27,400 lines of code in 56 files) so that it allows
us to report our findings more thoroughly, yet complex enough (5
mutual exclusions, 3 condition variables) so that it lends itself to
a case study. Furthermore, the growing importance of concurrency
and interest in transactional memory, as well as the lack of exhaus-
tive comparison studies with locks, demonstrate that there is still
need for more such studies.

In yet another work based on the Quake multiplayer game
server, Lupei et al. [17] present a case study to evaluate the par-
allelization of SynQuake, a 2D version of Quake 3 which they de-
veloped to use as a game benchmark. They compare a lock-based
parallel version of Quake (ported to SynQuake) with a transactional
memory parallel version of SynQuake, developed using a software
transactional memory library (libTM). Besides using a different
testbed from ours, other aspects in which their work differs from
ours is that they do not explore conditional variables, while we
do, and they use the libTM library, developed by one of the au-
thors, while we use “off-the-shelf” GNU C Compiler Collection
(GCC) and the GNU Transactional Memory Library (libitm). The
libTM library is highly-customizable, it supports different conflict
detection and conflict resolution methods, which are explored in the
transactional memory version of SynQuake. The libitm library, on
the other hand, does not allow programmers to use different conflict
detection or resolution methods.

Finally, Volos et al. [28] discuss the usage of transactional
memory to fix concurrency bugs in programs that use traditional
lock-based synchronization. Their research is based on a study
that picked some popular open-source software (the Mozilla web
browser, the Apache HTTP server and the MySQL database) and
tried to use transactional memory to fix existing concurrency bugs
that had been reported and registered in public bug tracking sys-
tems. Despite the fact that real-world concurrent programs are used
in the study, one of its premises is to use transactional memory
to remedy chosen concurrency bugs that can benefit from transac-
tional memory. Thus, different from our work, the focus is not to
evaluate how transactional memory compares with lock-based syn-
chronization when used as a replacement, but rather to carry out
an empirical analysis on its use to fix chosen concurrency bugs on
existing programs.

3. luaproc
The Lua programming language [13] supports coroutines, which
enable collaborative multithreading. On the one hand, coroutines
in Lua cannot natively exploit hardware parallelism, such as the
one provided by multi-core processors, since they are confined to a
single operating system thread. On the other hand, coroutines can
be combined with system threads to create a combined concurrency
model based on both user and system threads, like proposed in [12].
The luaproc programming library [24] uses the native concurrency
support and the C API that Lua offers to implement that model.

User threads in luaproc are called Lua processes, which are exe-
cution flows of Lua code. Each Lua process uses a single Lua state,
which defines the interpreter’s state and keeps track of functions
and global variables, among other interpreter related information.
Thus, Lua processes have independent resources and do not share
memory. When Lua code is loaded in a Lua state, its execution can
be controlled just like a coroutine: it can be suspended, resumed
and yielded. Also, it is possible to create multiple Lua states in C.
Therefore, multiple Lua processes can be created and have their
execution controlled from C. The library offers an optional feature
that allows Lua states from finished Lua processes to be recycled,
or in other words, to be used to host a new Lua process instead of
being destroyed.

Communication between Lua processes is only possible by
means of message passing. Each message can carry a tuple of
Lua values of the following types: number, string, boolean or nil.
Messages are addressed to communication channels, which are
identified by (string) names and are completely decoupled from
Lua processes. Sending a message in luaproc is a synchronous op-
eration. A call to the send function only returns once the message
has been received or the channel has been destroyed; if there is
no Lua process waiting to receive a message on the same channel,
the calling Lua process is blocked and its execution is suspended.
Receiving a message in luaproc, however, can be a synchronous or
asynchronous operation. A synchronous call to the receive opera-
tion works similarly to the send operation: if there is no Lua process
waiting to send a message on the channel, the calling Lua process
is blocked and its execution is suspended. An asynchronous call to
the receive operation always returns immediately and indicates if it
was able to receive a message or not.

System threads in luaproc are called workers and are imple-
mented with the POSIX Threads Library (pthreads). Workers han-
dle the execution of Lua processes and manage a single ready queue
that holds Lua processes ready for execution. Workers have no di-
rect relation with Lua processes and the same Lua process can be
executed by multiple workers along its lifetime.

Although luaproc provides Lua programmers with a concur-
rency model in which there is no shared memory and both com-
munication and synchronization rely on message passing, its im-
plementation in C relies on shared data and on standard lock-
based synchronization constructs that are widely used in programs
to control concurrency. In particular, it uses mutual exclusion
(pthread_mutex_t) and condition variables (pthread_cond_t)
to control access to shared global variables and to coordinate work-
ers and communication on channels, as follows:

ready queue mutex (mutex sched) Controls access to the single
(FIFO) queue that holds the Lua processes that are ready to be
executed. Workers continuously remove Lua processes from the
queue to execute them. They also insert Lua processes in the
queue when processes are created or when they explicitly yield.
Also used with the awake worker condition variable.

active Lua process count mutex (mutex lp count) Controls ac-
cess to the active Lua process count, which is incremented
when processes are created and decremented when they termi-

nate their execution. Also used with the no active Lua process
condition variable.

channel list mutex (mutex channel) Controls access to the list
that holds channels used by Lua processes to communicate.
The channel list is updated every time a communication chan-
nel is created or destroyed; it must be traversed every time a
Lua process tries to send or receive a message. Also used with
the channel free condition variable.

recycle mutex (mutex recycle list) Controls access to the list of
Lua states that were used by finished Lua processes and that
can be recycled, as well as to the recycle limit, which deter-
mines the maximum list size (or how many states can be re-
cycled). The recycle limit is updated when a function for that
purpose, included in the luaproc API, is called. The recycle list
is accessed, and potentially updated, every time a Lua process
is created or finishes executing.

channel mutex (channel→mutex) Controls access to individual
channels, i.e., each channel has its own mutual exclusion vari-
able. Channels hold two (FIFO) queues that cannot be non-
empty at the same time: a queue of Lua processes blocked try-
ing to send a message to the channel and a queue of Lua pro-
cesses blocked trying to receive a message from the channel.
The channel mutex, in fact, controls access to these queues.

awake worker condition (cond wakeup worker) Determines that
a worker must be awaken. This condition is used when Lua
processes are inserted in the ready queue and when workers are
destroyed.

no active Lua process condition (cond no active lp) Determines
that there are no more active Lua processes, i.e., that all Lua
processes have finished executing and the ready queue is empty.
This condition is used for synchronization purposes, to prevent
the main thread from exiting before all Lua processes have
finished their execution.

channel free condition (channel→can be used) Determines that
an individual channel may be used. Each channel has its own
channel free condition variable. This condition is used to coor-
dinate multiple operations, by different Lua processes, on the
same channel. If two Lua processes try to send a message on a
channel at the same time, one of them will be held back while
trying to access the channel until the channel free condition is
signaled.

4. Transactional Memory Support in the GNU
Compiler Collection (GCC)

The GNU Compiler Collection (GCC) includes experimental trans-
actional memory support since version 4.7.0. The support relies
both on the compiler itself and on a runtime library, the GNU
Transactional Memory Library (libitm); it can be enabled with the
-fgnu-tm command line option. The code generated by the com-
piler when transactional memory support is enabled is compatible
with the Linux variant of Intel’s Transactional Memory ABI spec-
ification [14]. The language extensions implemented in GCC to
support transactional memory are described in [27], which builds
on the C++11 specification.

Transactions in C and C++ can be defined by transaction
statements, transaction expressions, and function transactions. A
transaction statement, or a statement that executes as a transac-
tion, contains either the __transaction_relaxed keyword or
the __transaction_atomic keyword, followed by a compound
statement. The former keyword specifies a relaxed transaction,
while the latter specifies an atomic transaction.

A compound statement executed as a relaxed transaction does
not observe changes made by other transactions, nor do other trans-
actions observe its partial results before it completes; its execution
does not interleave with other transactions (atomic or relaxed) ex-
ecuting concurrently. Relaxed transactions do not impose restric-
tions on the code they execute, thus even code that might seem
unsuitable for transactions can be wrapped in a relaxed transaction.
The lack of restrictions allows relaxed transactions to support com-
munication and synchronization with other threads by using con-
structs such as locks, C++11 atomic variables, volatile variables
and I/O operations, i.e., it allows for interoperability with exist-
ing synchronization and communication constructs while provid-
ing isolation among transactions. This flexibility comes at a price,
though: isolation cannot be guaranteed for relaxed transactions that
include such communication and synchronization constructs, there-
fore their execution can appear interleaved with non-transactional
code executed concurrently by other threads. The granularity of the
potential interleaving, however, is not specified. Additionally, re-
laxed transactions may execute statements with side effects that
cannot be reverted, such as I/O operations. These statements, re-
ferred to as irrevocable actions, prevent relaxed transactions from
being canceled (or rolled back).

A compound statement executed as an atomic transaction, con-
versely, has stronger isolation guarantees. It does not observe
changes made by other threads, nor do other threads observe its
partial results before it completes; its execution does not inter-
leave with other threads executing concurrently. So, while re-
laxed transactions guarantee isolation from concurrent (atomic
or relaxed) transactional code, atomic transactions guarantee iso-
lation from concurrent transactional and non-transactional code.
Moreover, atomic transactions appear to execute atomically, in an
all-or-nothing fashion, and can be explicitly canceled (with the
__transaction_cancel statement) to void the effects of their
statements. However, just as the flexibility of relaxed transac-
tions comes at a price, so does the stronger isolation guarantees of
atomic transactions: only safe statements, or statements that have
no side effects that become visible before the transaction com-
pletes, are allowed in atomic transactions. This restriction ensures
that atomic transactions can be canceled. Since atomic transactions
can include function calls, function declarations may use the key-
words transaction_safe and transaction_unsafe to specify
whether they are considered safe or not — it is up to programmers
to use these keywords to appropriately classify their functions.
Functions declared as safe cannot contain statements that are not
safe (such as I/O or lock-based synchronization operations).

Transaction expressions and function transactions are simply
syntactic features. Transaction expressions use the same keywords
that define transaction statements (__transaction_relaxed and
__transaction_atomic); however, instead of being followed by
a compound statement, they are followed by a parenthesized ex-
pression. Function transactions also use the same keywords that
define transaction statements; still, they are included in function
definitions to indicate that a function’s body is executed inside a
transaction.

The semantics of transactional memory in GCC is based on the
C++11 standard memory model [3], which defines some ordering
constraints for multithreaded programs. The transactional memory
constructs implemented in GCC are only guaranteed to behave
properly, and thus to provide transaction isolation, in programs that
do not contain data race conditions.

5. From Locks to Transactional Memory
We took up the challenge of porting the luaproc concurrent pro-
gramming library for the Lua programming language, a real-world
application that relies on lock-based constructs provided by the

POSIX Threads Library (pthreads), to use transactional memory in-
stead. Our goal was to replace all pthreads lock-based constructs in
luaproc, such as mutual exclusion (pthread_mutex_t) and condi-
tion variables (pthread_cond_t), with transactional memory con-
structs supported by the GNU Compiler Collection (GCC). We in-
tentionally avoid mixing locks and transactions, as we believe this
complicates reasoning about synchronization and our main interest
lies in evaluating transactional memory as a replacement for locks.

The first decision we had to make when porting luaproc was
whether we would use atomic transactions, relaxed transactions
or both atomic and relaxed transactions on a case-by-case basis.
Choosing atomic transactions would provide us with stronger iso-
lation and the ability to explicitly cancel transactions, but it would
require us to specify which of the functions implemented in luaproc
are transaction safe and would restrict statements allowed in trans-
actions, as well as in functions called within transactions. Choos-
ing relaxed transactions, on the other hand, would provide us with
greater flexibility to place statements and function calls in transac-
tions, but would not allow us to explicitly cancel transactions and
would provide us with weaker isolation.

Since luaproc already used lock-based constructs, i.e., its crit-
ical regions were already defined and we assumed it did not have
race conditions, our isolation requirement was just that statements
that were already within critical regions would not have their exe-
cution interleaved. Also, we did not anticipate the need to explic-
itly cancel transactions. Therefore, we chose to use relaxed transac-
tions, with the added benefit of having no restrictions to place state-
ments and function calls within transactions — this was especially
useful for critical sections that include functions with side effects
that cannot be rolled-back (such as pthread_create, for exam-
ple). Just like we intentionally avoided mixing locks with transac-
tions, we avoid mixing atomic and relaxed transactions, since we
believe it complicates reasoning about synchronization.

Having decided to use relaxed transactions, we started the actual
porting process. We worked our way through the critical regions
in each of the luaproc two modules: the scheduler (lpsched.c) and
the API implementation (luaproc.c). In each module we started
with the easier mutual exclusion variables, notably those that were
not used with condition variables, and then moved on to the more
elaborate synchronization statements, notably those that were used
with condition variables or that had a coarser granularity.

Replacing lock-based constructs with transactions was some-
times just a matter of exchanging a pthread_mutex_lock call
for a __transaction_relaxed statement and the corresponding
pthread_mutex_unlock call for a closing brace (to mark the end
of the transaction statement). This was the case for critical regions
where there were no calls to operations on condition variables, like
the example presented in figures 1 and 2, which shows the code
to increase the count of active Lua processes in a shared variable
(lpcount). This simple pattern closely relates to the notion that the
semantics of transactions can be understood as a single global lock
[10]. We estimate we were able to port roughly half of the critical
regions in luaproc by using this pattern, i.e., by replacing lock and
unlock function calls with transaction statements and without any
additional changes. Nevertheless, the effort and time consumed to
port such critical regions represent only a small part of the overall
effort and time required to port luaproc as a whole.

Porting critical regions that included calls to operations on con-
dition variables, however, was not as straightforward as replacing
lock and unlock function calls. We already expected this hurdle,
since the transactional memory support in GCC does not include an
alternative or equivalent construct to condition variables. As a mat-
ter of fact, most transactional memory systems do not include such
functionality, and although condition variable designs for transac-

void sched_inc_lpcount(void) {
pthread_mutex_lock(&mutex_lp_count);
lpcount ++;
pthread_mutex_unlock(&mutex_lp_count);

}

Figure 1. Increasing the active Lua process count with locks.

void sched_inc_lpcount(void) {
__transaction_relaxed {

lpcount ++;
}

}

Figure 2. Increasing the active Lua process count with a transac-
tion.

tional memory have been proposed [6, 16], no standards have been
set.

Our approach for dealing with condition variables was twofold,
according to what they were used to express. On the first case,
when dealing with condition variables used to express the state of
other existing variables, we started by removing the signal function
calls (pthread_cond_signal and pthread_cond_broadcast).
Then, we replaced the wait function calls (pthread_cond_wait)
with a busy wait on the value of the existing variable that had its
state represented by the condition variable. Using busy waits is
an expected pattern [2, 11] in obstruction-free concurrency and is
commonly observed when explicit retry [9] (or similar) opera-
tions are not supported. We used this approach, for instance, with
the no active Lua process condition variable. This variable is used
to allow a thread to wait until there are no more active Lua pro-
cesses, an event which is signaled by other threads when the value
of the lpcount shared variable used to keep track of active Lua
processes reaches zero. In this case, we had to replace the wait
function call with a busy wait on the value of the shared variable
(lpcount). However, to avoid a livelock due to conflicting trans-
actions, we placed the busy wait outside the transaction, which we
used just to read the value of the shared variable. This particular
example is presented in figures 3 and 4, which show the function
used to wait until there are no more active Lua processes.

void sched_wait(void) {
pthread_mutex_lock(&mutex_lp_count);
if(lpcount != 0) {

pthread_cond_wait(&cond_no_active_lp ,
&mutex_lp_count);

}
pthread_mutex_unlock(&mutex_lp_count);

}

Figure 3. Waiting until there are no more active Lua processes
with locks.

void sched_wait(void) {
while (__transaction_relaxed(lpcount)

!= 0);
}

Figure 4. Waiting until there are no more active Lua processes
with a transaction.

A sched_yield function call could be used in the code pre-
sented in figure 4, in the while body, to have the current thread re-
linquish the processor and allow another thread to run, in case the
no_active_lp flag remained false. We explored that possibility by
running the performance tests described in Section 6 with a modi-
fied version of luaproc that included a sched_yield function call
as described; however, we did not observe significant differences in
execution times and processor use, i.e., we did not observe a per-
formance improvement. It is our understanding that including the
function call does not necessarily increase performance, as yielding
is likely to be advantageous when there are more workers than pro-
cessor cores and plenty of Lua processes being actively executed
to keep workers busy, a scenario not explored by the performance
tests.

We applied the same pattern when porting the awake worker
condition variable. This variable is used to allow workers to wait
until there are Lua processes to be executed in the ready process
queue, a condition signaled by functions that place processes in
the queue. When using transactions, workers enter a busy wait
to check the size of the ready Lua process queue, which is read
from within a transaction and copied to a local variable, just like
we did previously to check the active Lua process count. Apart
from the condition variable replacement, it is also worth noting that
by using transactions we were sometimes able to simply remove
unlock function calls in critical regions, for instance when handling
errors or particular conditions that would result in exiting a loop or
returning from a function.

In the second case, when dealing with condition variables that,
by themselves, were used to express a state, we had no choice but to
replace them with regular (integer) variables, which we then used to
implement busy waits similarly to the previously described porting
pattern. This was the case with the channel free condition variable
included in the structure that defines communication channels and
is used to indicate whether a channel is currently being used or
whether it is free to send/receive a message, i.e., a boolean state.
Thus, we replaced it with an integer (flag) variable with the same
name, as shown in figures 5 and 6.

The channel free condition variable was perhaps the condition
variable involved in the most elaborate synchronization statements
in luaproc. On the one hand, it provided us with an emblematic
example of how transactional memory can make the semantics
of synchronization easier to understand when the conditions are
right. It allowed us to change the implementation of a function to
unlock access to a channel which originally operated on two mutual
exclusion variables and signaled a condition variable to simply
execute a single statement within a transaction, as shown in figures
7 and 8. The easier semantics, though, come at the cost of using
busy waits to check for conditions.

On the other hand, the channel free condition variable also
provided us with the most intricate synchronization statement to
port. At first it might seem as if this condition variable should be
a mutual exclusion instead. However, the fact that channels can
be destroyed while there are blocked threads waiting to use them
makes this unfeasible, as we must be able to resume all blocked
threads once the channel is destroyed. The statement shown in
figure 9 is used in functions to access communication channels
(called every time a Lua process sends or receives a message)
and to destroy them. First, it tries to find a channel by using its
name (channel_unlocked_get); whether the channel exists, its
reference is returned, otherwise NULL is returned. If a channel is
found, it tries to secure exclusive access to it by trying to lock the
channel’s mutual exclusion variable (pthread_mutex_trylock).
In case it finds a channel but it isn’t able to secure exclusive access,
it waits until the corresponding channel free condition variable is
signaled.

struct stchannel {
list send;
list recv;
pthread_mutex_t mutex;
pthread_cond_t can_be_used;

};

/* create a new channel and insert it into
channels table */

static channel *chan_create(const char
*cname)

{

channel *chan;

/* get exclusive access to operate
channels */

pthread_mutex_lock(&mutex_channel);

/* create new channel and register */
lua_getglobal(chanls , LUAPROC_CHAN_TABLE);
chan = (channel *) lua_newuserdata(chanls ,

sizeof(channel));
lua_setfield(chanls , -2, cname);
/* remove channel table from stack */
lua_pop(chanls , 1);

/* initialize channel struct */
list_init(&chan ->send);
list_init(&chan ->recv);

pthread_mutex_init(&chan ->mutex , NULL);
pthread_cond_init(&chan ->can_be_used ,

NULL);

/* release exclusive access to operate
channels */

pthread_mutex_unlock(&mutex_channel);

return chan;
}

Figure 5. The communication channel’s structure and creation
function with locks.

Once again, we recurred to a busy wait to replace a wait function
call on a condition variable. In this case, however, we had to take
a more resourceful approach, as shown in figure 10. We begin by
trying to find a channel by its name, similarly to the original lock-
based synchronization statement. If a channel is not found, the
transaction exits. If a channel is found, it copies the value of the
integer flag that indicates if the channel is free to use to a local
variable. Then, if it finds that the channel is free to use, it changes
the flag to indicate the channel is not free anymore. The busy wait
that wraps the transaction ensures that it will be executed over again
until it either determines that a channel does not exist or finds a
channel, determines the channel is free to use and secures exclusive
access to the channel by altering its free-to-use flag. As long as it
finds a channel but the channel is not free to use, it will re-execute
the transaction, in a behavior that mimics the behavior of the wait
function call on a condition variable, but using a busy wait. In fact,
all signal operations to the channel free condition variable were
replaced by statements to set the free to use flag to true.

Overall, porting luaproc to use transactional memory instead
of lock-based constructs was a fairly straightforward process, with
two notable exceptions, which we believe highlight some of the
present challenges of using transactional memory: choosing which
transaction type(s) to use and dealing with condition variables. The

struct stchannel {
list send;
list recv;
int can_be_used;

};

/* create a new channel and insert it into
channels table */

static channel *chan_create(const char
*cname)

{

channel *chan;

__transaction_relaxed {

/* create new channel and register */
lua_getglobal(chanls ,

LUAPROC_CHAN_TABLE);
chan = (channel *) lua_newuserdata(chanls ,

sizeof(channel));
lua_setfield(chanls , -2, cname);
/* remove channel table from stack */
lua_pop(chanls , 1);

/* initialize channel struct */
list_init(&chan ->send);
list_init(&chan ->recv);
chan ->can_be_used = TRUE;

}

return chan;
}

Figure 6. The communication channel’s structure and creation
function with a transaction.

void luaproc_unlock_channel(channel *chan) {
/* get exclusive access to op. on channels */
pthread_mutex_lock(&mutex_channel);
/* release channel exclusive access */
pthread_mutex_unlock(&chan ->mutex);
/* signal channel can be used */
pthread_cond_signal(&chan ->can_be_used);
/* release exclusive access to op. on

channels */
pthread_mutex_unlock(&mutex_channel);

}

Figure 7. A simple function to unlock access to a channel with
locks.

former required understanding how both atomic and relaxed trans-
actions work, as well as reasoning about how each of them would
blend with luaproc. The choice between transaction types is partic-
ularly important, as each type provides different isolation guaran-
tees and the same program could behave differently depending on
the atomicity semantics that are employed [18]. The latter required
coming up with a pattern to replace condition variables (and their
corresponding wait and signal operations). In our case this pattern
turned out to be a busy wait, which is an extremely simple syn-
chronization mechanism, yet causes a potentially wasteful increase
in processor use.

void luaproc_unlock_channel(channel *chan) {
__transaction_relaxed {

chan ->can_be_used = TRUE;
}

}

Figure 8. A simple function to unlock access to a channel with a
transaction.

/*
try to get channel and lock it; if lock
fails , release external lock (mutex_channel)
to try again when signaled -- this avoids
keeping the external lock busy for too long.
during the release , the channel may be
destroyed , so it must try to get it again.

*/
while (((chan = channel_unlocked_get(chname))

!= NULL) &&
(pthread_mutex_trylock(&chan ->mutex)

!= 0)) {
pthread_cond_wait(&chan ->can_be_used ,

&mutex_channel);
}

Figure 9. An elaborate synchronization statement used in func-
tions to access and to destroy communication channels.

do {
__transaction_relaxed {

chan = channel_unlocked_get(chname);
if (chan != NULL) {

chan_free = chan ->can_be_used;
if (chan ->can_be_used == TRUE) {

chan ->can_be_used = FALSE;
}

}
}

} while ((chan != NULL) &&
(chan_free == FALSE));

Figure 10. A resourceful use of transactions to replace waiting on
a condition variable in functions to access and destroy communica-
tion channels.

6. Performance
While porting luaproc to use transactional memory we replaced
all lock-based constructs with transactions, sometimes wrapping
them with busy waits. These changes, especially the introduction
of busy waits, prompted us to assess how the performance of the
lock-based version of luaproc would compare to the transactional
memory version. We were especially interested in two metrics: total
execution time and processor use.

We based this comparative performance evaluation on three
tests. We executed the tests on a machine with an Intel Core i7-
870 processor with four cores of 2.93GHz each, capable of running
up to eight threads, with 4GB of DDR3 1333MHz RAM and run-
ning Ubuntu 12.04 LTS with kernel 3.2.0-38-generic #61-Ubuntu
SMP. Each individual test execution was repeated ten times and the
results we present in this section are the means of observed val-
ues. We measured both execution times and processor use with the
GNU time utility.

On the first test, we evaluated the performance impact of the
busy waits we introduced as a replacement for the awake worker
condition used by workers and the no active Lua process con-
dition. The busy wait that replaced the awake worker condition
causes workers to continuously check whether there are Lua pro-
cesses in the ready process queue. The busy wait that replaced the
no active Lua process condition causes the main luaproc thread to
continuously check whether there are active Lua processes. There-
fore, in this test we create a number of workers and then create a
single Lua process that simply executes a long for loop, i.e., we
intentionally create a situation where there are more workers than
actual Lua processes to be executed.

We experimented with 1, 2, 4 and 8 workers in the first test and
started by measuring execution times. The lock-based version of
luaproc had almost constant execution times of 5.35s, with a 0.01s
standard deviation, independently of the number of workers. The
transactional memory version had slightly increasing execution
times, as we increased the number of workers, from 5.61s to 6.47s,
from 4% to 20% longer than the lock-based version execution time
for the same number of workers; standard deviations ranged from
0.01s to 0.17s.

Processor use in the first test, however, as shown in figure 11,
increases significantly when more workers are used in the trans-
actional memory version, while it stays constant in the lock-based
version of luaproc. Variance was insignificant for the processor use
of the lock-based version (0.00%) but the transactional memory
version exhibited very small standard deviations (from 0.70% to
0.97%) for 1 and 2 workers, and more significant standard devia-
tions for 4 workers (4.29%) and 8 workers (25.88%). The constant
processor use in the lock-based version can be explained by the
fact that only one worker remains active during the test’s execu-
tion, namely the one that is executing the only active Lua process.
Throughout execution, the main thread simply waits (on a condi-
tion variable) for the active Lua process to finish and any remain-
ing workers simply wait (also on a condition variable) for other Lua
processes to be inserted in the ready process queue; thus, they do
not increase processor use.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

1 2 4 8

P
e
rc

e
n
t
o
f
p
ro

c
e
s
s
o
r

u
s
e
 (

%
)

Workers

Lock-based luaproc
Transactional Memory luaproc

Figure 11. Processor use for the first performance test: multiple
workers, a single Lua process.

In the transactional memory version of luaproc, the increased
processor use can be explained by two reasons. The first reason is
that luaproc uses its main thread just to wait until all Lua processes
have finished executing, i.e., when a single worker is used there
are actually two threads, the main one which simply waits and
another one which actually executes Lua processes. On the one
hand, in the lock-based version of luaproc, waiting for all Lua

processes to finish executing was implemented with a condition
variable and thus did not increase processor use. In the transactional
memory version of luaproc, on the other hand, this waiting was
implemented with a busy wait. This means that the main thread is
constantly polling to check whether all Lua processes have finished
executing and therefore it consumes a processor. That is why the
results show near 200% processor use when a single worker is used.
The second reason is that when porting luaproc, we replaced the
main worker loop, which originally waited on a condition variable,
to continuously poll the ready process queue. This means that,
even when the ready process queue is empty, workers will poll it,
consuming a processor. That is why, despite not increasing actual
work to be done (for instance by creating more Lua processes), the
processor use increases as we increase the number of workers. This
suggests that in the transactional memory version of luaproc, the
relation between workers and Lua processes is more important than
in the lock-based version and perhaps this version should allow for
dynamic adaptation during execution.

We also used the first test to further investigate where time was
being spent when using each of luaproc’s versions. For that mat-
ter, we employed the strace utility to produce a summary of sys-
tem calls and relative time spent on each system call during the
test’s execution. Perhaps surprisingly, we found that both versions
reportedly spent close to 100% of their time making calls to the
futex [7] system call, a construct which can be used to imple-
ment basic locking or higher-level locking abstractions, such as the
POSIX Threads Library (pthreads) mutual exclusion and condition
variables. This means that, despite providing a transactional mem-
ory abstraction, the GNU Transactional Memory Library (libitm)
relies on the same system call used by pthreads for its underlying
synchronization. Most likely, libitm will switch to specific hard-
ware supported system calls for transactions if (or once) they are
available. Moreover, we noticed that the total number of calls to
the futex system call was significantly higher in the transactional
memory version of luaproc (around 200,000 versus around 8 in the
lock-based version). We assume that difference is due to the busy
waits we employed in the transactional memory version.

On the second test, we evaluated the performance impact of the
busy waits we introduced as a replacement for the channel free
condition variable used in communication channels. These busy
waits were implemented in functions to destroy channels and to
obtain references to channels (called every time a message is sent
or received, as well as when a channel is created). Thus, in this test
we first create a number of communication channels, then we create
100 Lua processes; half of the Lua processes continuously send a
message and the other half continuously receive a message. Each
sender/receiver repeats the send/receive cycle for 10,000 times. We
ran this test with different numbers of workers and communication
channels. Its results are presented in table 1.

As the results for the second test show, execution times for both
versions increased as we increased the contention on communica-
tion channels. Still, the transactional memory version had consider-
ably longer execution times than the lock-based version. In fact, it
had execution times that ranged from 37% to 244% longer, or 125%
longer on average, than the lock-based version. Standard deviation
ranged from 0.01s to 0.89s for the lock-based version and from
0.13s to 2.75s for the transactional memory version. The longer
execution times for the transactional memory version can be ex-
plained by the increased contention on communication channels,
which in turn evidences the cost of the busy waits used to access
them. As we increased the number of workers, the number of si-
multaneously active Lua processes also increased and so did the
demand to access communication channels. Therefore, since chan-
nels cannot be accessed concurrently, more workers got stuck wait-
ing for their turn to execute send or receive operations. This is a

Workers Comm. Channels Execution time (s)

Locks Transactional Memory

1 1.00 2.10
1 2 1.02 2.09

4 1.02 2.13

1 7.08 9.72
2 2 6.92 12.61

4 6.50 12.14

1 15.41 27.36
4 2 14.71 26.89

4 14.43 26.35

1 22.26 76.61
8 2 21.62 73.78

4 20.42 69.49

Table 1. Execution times for the second performance test: multiple
Lua processes sending and receiving messages, different numbers
of workers and communication channels.

worst-case scenario for busy waits, as performance was clearly im-
pacted. The overall processor use in this test followed the pattern
observed in the first test, i.e., the transactional memory version of
luaproc consumed more processors during the test’s execution.

On the third test, we used a parallel string search application to
evaluate how an application would perform with each version of
luaproc. In this test we were interested in assessing the overall per-
formance of an application and not in stressing specific aspects of
luaproc. The string search application relies on three modules. The
first (master) module creates workers and communication channels,
as well as reads the name of the file with the strings (or patterns)
that must be searched for and the names of the target files to search
in. The second (coordinator) module handles work distribution and
consolidates results. The third (searcher) module does the actual
searching, i.e., it reads target files looking for the specified strings.
Each searcher receives a single file name at a time; it searches the
file for the specified strings and then it sends the matching lines
back to the coordinator. If there are files left to search, the coordi-
nator then sends a new file name to the searcher after it reports its
results.

For this test, we used a sample strings file with 5 strings, one
per line, and multiple copies of the same target file (an ASCII log
file, with one entry per line). The target file had 8,599,067 lines
and 2,172,914,027 bytes (around 2GB). We ensured that the there
were always enough workers and target file copies to run searchers
in parallel. Therefore, when working with 1 searcher we used a
single target file copy and 2 workers (1 coordinator + 1 searcher),
when working with 2 searchers we used two target file copies and
3 workers (1 coordinator + 2 searchers) and so forth. The results of
the third test are presented in table 2.

As the results of the third test show, when we used a single
worker, execution times increased almost linearly, in accordance
with the number of target files; when we increased the number of
workers, execution times only increased significantly when there
were more target files than workers, which confirms we were able
to exploit hardware parallelism to search target files in parallel. The
only exception occurred when we ran the test with 5 workers and 4
target files, which resulted in longer execution times than when we
ran it with 5 workers and 2 target files, although still shorter than
with 3 workers and 4 target files. We suspect that was due to an I/O
bottleneck when accessing the single hard disk drive where target
files were stored. It is worth noting that in this test the execution
times for the lock-based and the transactional memory luaproc

Workers Target files Execution time (s)

Locks Transactional Memory

1 133.72 134.80
1 2 269.47 271.68

4 541.27 544.17

1 130.99 146.05
3 2 141.53 148.81

4 315.62 323.92

1 129.47 155.94
5 2 139.64 170.60

4 237.99 255.71

Table 2. Execution times of the third performance test: parallel
string search.

versions do not differ significantly. This is a best-case scenario for
busy waits, where we adapted the number of workers to the actual
work to be done and there is no contention on communication
channels. The overall processor use in this test followed the pattern
observed in the first test, i.e., the transactional memory version of
luaproc consumed more processors during the test’s execution.

7. Conclusion
In this paper we presented our experience, or lessons learned, from
porting the luaproc concurrent programming library to use trans-
actional memory instead of the lock-based constructs. In our case
study, we relied solely on the transactional memory support in-
cluded in the latest stable GNU Compiler Collection (GCC) version
and on commonly available hardware without specific transactional
memory support.

Porting luaproc to use transactions instead of locks was a mixed
experience. On the one hand, replacing mutual exclusion variables
(that were not used with condition variables) with transactions was
very straightforward and sometimes even resulted in simpler code,
i.e., less lines with better readability. These mutual exclusion locks
that were easy to replace accounted for roughly half of the critical
sections in luaproc.

On the other hand, replacing condition variables with transac-
tions required more careful reasoning. Since the transactional mem-
ory support in GCC, like most transactional memory systems, does
not include an alternative or equivalent construct to condition vari-
ables, we were forced to wrap transactions with busy waits and
to adapt code accordingly. Sometimes this resulted in more lines
of code and, in our perception, harder to understand synchroniza-
tion statements. Replacing condition variables with busy waits and
adapting the code accordingly accounted for most of the time we
spent porting luaproc to use transactional memory. This suggests
that the lack of a native, equivalent, functionality is still an open
issue for transactional memory. Moreover, using busy waits has a
performance impact on processor use and potentially on execution
times. Even in the era of multi-core processors, it is not clear that
spending processor cycles to continuously poll variables is a sound
choice, especially on machines that host multiple servers or run
multiple programs for different users.

Finally, many of the problems commonly associated with locks
come down to relying on the programmers’ discipline to ensure
that: critical regions are protected with locks, locks are properly re-
leased, and deadlocks are avoided. However, transactional memory
also relies, to a certain extent, on the programmers’ discipline. It
is up to the programmer to define which transaction type(s) will
be employed (atomic and/or relaxed) and to reason about the con-
sequences of that choice, to determine which code blocks must be

executed atomically, to ensure transactional data is not accessed
outside transaction statements and, when using atomic transactions,
to properly annotate function declarations to indicate whether they
are transaction safe.

Acknowledgments
The authors would like to thank Simone Barbosa, from PUC-Rio,
for her careful reading of the first draft and valuable suggestions,
as well as the anonymous reviewers for their insightful comments.
The authors would also like to thank CNPq for partially supporting
this work (grant 305874/2010-1).

References
[1] J. Armstrong. Why I don’t like shared memory, September 2006. URL

http://armstrongonsoftware.blogspot.com/2006/09/-
why-i-dont-like-shared-memory.html. Personal Blog –
Armstrong on Software.

[2] H.-J. Boehm. Transactional memory should be an implementation
technique, not a programming interface. In Proceedings of the First
USENIX Conference on Hot Topics in Parallelism, HotPar’09, Berke-
ley, CA, USA, 2009. USENIX Association.

[3] H.-J. Boehm and S. V. Adve. You don’t know jack about shared
variables or memory models. Communications of the ACM, 55(2):
48–54, Feb. 2012. ISSN 0001-0782. doi: 10.1145/2076450.2076465.

[4] P. Bright. IBM’s new transactional memory: make-or-
break time for multithreaded revolution, August 2011. URL
http://arstechnica.com/hardware/news/2011/08/-
ibms-new-transactional-memory-make-or-break-time-
-for-multithreaded-revolution.ars.

[5] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM
can be more than a research toy. Communications of the ACM, 54(4):
70–77, Apr. 2011. ISSN 0001-0782.

[6] P. Dudnik and M. Swift. Condition variables and transactional mem-
ory: Problem or opportunity? In TRANSACT ’09: 4th Workshop on
Transactional Computing, February 2009.

[7] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks:
Fast userlevel locking in Linux. In Ottawa Linux Symposium, June
2002.

[8] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguade, T. Har-
ris, and M. Valero. QuakeTM: parallelizing a complex sequential ap-
plication using transactional memory. In Proceedings of the 23rd In-
ternational Conference on Supercomputing, ICS ’09, pages 126–135,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-498-0. doi:
10.1145/1542275.1542298.

[9] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Compos-
able memory transactions. In Proceedings of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’05, pages 48–60, New York, NY, USA, 2005. ACM.
ISBN 1-59593-080-9.

[10] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition,
chapter 2, pages 36–37. Morgan and Claypool Publishers, 2nd edition,
2010. ISBN 1608452352, 9781608452354.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, ISCA
’93, pages 289–300, New York, NY, USA, 1993. ACM. ISBN 0-8186-
3810-9.

[12] R. Ierusalimschy. Programming in Lua, chapter 30. Lua.org, second
edition, 2006. ISBN 8590379825.

[13] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho. Lua – an
Extensible Extension Language. Software – Practice and Experience,
26(6):635–652, 1996.

[14] Intel. Intel Transactional Memory Compiler and Runtime Application
Binary Interface. Intel Corporation, May 2009. Revision 1.1 (Draft).

[15] E. A. Lee. The Problem with Threads. Tech-
nical Report UCB/EECS-2006-1, EECS Department,

University of California, Berkeley, Jan 2006. URL
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/-
EECS-2006-1.html. The published version of this paper is in IEEE
Computer 39(5):33-42, May 2006.

[16] V. Luchangco and V. J. Marathe. Revisiting condition variables and
transactions. In TRANSACT ’11: 6th Workshop on Transactional
Computing, June 2011.

[17] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, and
C. Amza. Transactional memory support for scalable and transparent
parallelization of multiplayer games. In Proceedings of the 5th Eu-
ropean Conference on Computer systems, EuroSys ’10, pages 41–54,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-577-2. doi:
10.1145/1755913.1755919.

[18] M. Martin, C. Blundell, and E. Lewis. Subtleties of transactional
memory atomicity semantics. IEEE Computer Architecture Letters,
5(2), July 2006. ISSN 1556-6056.

[19] J. Ousterhout. Why threads are a bad idea (for most purposes).
Presentation given at the 1996 USENIX Annual Technical Conference,
January 1996.

[20] J. Reinders. Transactional synchroniza-
tion in Haswell, February 2012. URL
http://software.intel.com/en-us/blogs/2012/02/07/-
transactional-synchronization-in-haswell/.

[21] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
B. Aditya, and E. Witchel. Txlinux: using and managing hardware
transactional memory in an operating system. SIGOPS Operating Sys-
tems Review, 41(6):87–102, October 2007. ISSN 0163-5980. doi:
10.1145/1323293.1294271.

[22] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional pro-
gramming actually easier? In Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’10, pages 47–56, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-877-3. doi: 10.1145/1693453.1693462.

[23] N. Shavit and D. Touitou. Software transactional memory. In Pro-
ceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’95, pages 204–213, New York, NY,
USA, 1995. ACM. ISBN 0-89791-710-3.

[24] A. Skyrme, N. Rodriguez, and R. Ierusalimschy. Exploring Lua for
concurrent programming. Journal of Universal Computer Science, 14
(21):3556–3572, dec 2008.

[25] H. Sutter. The trouble with locks. Dr.
Dobb’s Journal, March 2005. URL
http://www.drdobbs.com/cpp/the-trouble-with-locks/-
184401930.

[26] H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue, 3:54–62, September 2005. ISSN 1542-7730.

[27] TM Specification Drafting Group. Draft Specification of Transac-
tional Language Constructs for C++. Transactional Memory Spec-
ification Drafting Group, February 2012. Version 1.1.

[28] H. Volos, A. J. Tack, M. M. Swift, and S. Lu. Applying transactional
memory to concurrency bugs. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’12, pages 211–222,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-0759-8. doi:
10.1145/2150976.2150999.

[29] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Har-
ris, and M. Valero. Atomic Quake: Using transactional memory in an
interactive multiplayer game server. In Proceedings of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’09, pages 25–34, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-397-6. doi: 10.1145/1504176.1504183.

