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Abstract
A major impediment to achieving high performance in
transactional memory is repeated aborts due to con-
flicts among transactions. Transaction scheduling miti-
gates these effects by delaying a transaction until pos-
sible conflicting transactions have completed. The pa-
per presents RELSTM, a new transaction scheduler
that attempts to predict future conflicts on the basis
of second-hop conflicts, namely, conflicts through an
intermediate transaction. Our experimental evaluation
shows that RELSTM provides performance benefits in
high-contention workloads on many cores.

1. Introduction
Transactional memory (TM) has been widely explored
as a convenient approach to concurrent programming,
since it allows the programmer to abstract problem-
atic details such as thread synchronization or data con-
sistency. Instead of manually synchronizing shared
data structures in critical sections, those sections are
wrapped in transactions and coded without requiring
synchronization, as non-concurrent programs. Transac-
tions are then executed, aborted upon conflicts access-
ing shared data, and restarted again from the beginning
until they finish without conflicts.

The strategies used to deal with conflicts possibly
play a major role in the performance of transactional
memories, as a transaction abort means wasted work.
Several alternatives have been proposed [8, 13], which
usually abort at least one transaction from the ones in-
volved in a conflict, striving for a minimum perfor-
mance deterioration. Transactional memories include
a module called contention manager (CM) to manage
those conflicts and decide which transactions to abort.
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Figure 1. RELSTM flow chart.

Another appealing module studied to improve per-
formance is a transaction scheduler, which controls
the order and timing of transaction executions. It adds
policies to decide when transactions can start, either
for the first time or after an abort. This module has
recently gained interest [4, 7] as a means to avoid
aborts before they occur, hence improving the total
performance. Dragojević et al. [7] propose an algo-
rithm based on accesses of memory addresses (read sets
and write sets), to measure potential conflicts between
them, based on the assumption that transactions in a
thread access similar memory addresses. Atoofian [4]
devises an algorithm that schedules transactions based
on how many times they have aborted already. CAR-
STM [6] and LO-SER [10] are schedulers that seri-
alize aborted transactions after the transactions they



conflicted with, therefore preventing the same conflicts
from happening again.

Although several studies have been done on transac-
tion schedulers, there are many possibilities yet to be
explored. We propose a new point of view based on
analyzing relations between transactions. These rela-
tions are mainly of conflict relations: two transactions
are related if they conflict with each other. This idea
can be extended to cover second-hop conflicts, namely
transactions T1h that conflicted directly with a specific
transaction Tx and in turn, transactions T2h (second-
hop transactions) that conflicted with some transaction
in T1h. Recursively, these relations can be extended
to n-hop relations. It is intriguing to analyze first and
second-hop conflicts between transactions and their im-
pact on transaction scheduling.

Following this idea, we propose RELSTM, a Trans-
action Scheduler that tracks conflict relations between
transactions. Upon a conflict, each transaction registers
its opponent as well as those transactions the opponent
conflicted with. Upon abort, the transaction is backed
off if the direct opponent or a predefined percentage of
second-hop transactions are still in execution. After be-
ing blocked, the transaction resumes again. This algo-
rithm is a proactive scheduler in the sense that it is able
to activate the scheduling policy before a given conflict
occurs. If a transaction Ta is a second-hop transaction
of Tb and Ta is still in execution, RELSTM can proac-
tively block Tb to prevent a future conflict. Reactive
schedulers, on the other hand, only react to conflicts
after they occur.

We have implemented RELSTM over TinySTM [12]
and evaluated it against the benchmarks included in
the STAMP suite [11]. This evaluation is compared
with the same benchmarks against TinySTM and CAR-
STM, to assess in which cases there is a performance
improvement. Our findings reveal that RELSTM achieves
more transaction throughput in tests that generate a
significant number of aborts, especially when a high
number of CPU cores is used.

The rest of this paper is structured as follows: Sec-
tion 2 describes related work, Section 3 offers de-
tails about the implementation of RELSTM, Section 4
shows the evaluation results and Section 5 concludes
with a discussion.

Upon transaction Tx start:
if (Tx.conflicted is not NULL)

if Tx.conflicted is registered in executing array
lock on serial lock

else if (Tx.twohop is not empty)
tx executing: Number
for each ID in Tx.twohop

if (ID is registered in executing array)
increment tx executing

if ((executing / size of Tx.twohop) >= TWOHOP RATE)
backoff during Tx.backoff time
increment Tx.backoff for exponential backoff

end if

Figure 2. RELSTM pseudocode for the transaction
scheduling before a transaction starts. The code uses a global
array to register and deregister transactions in execution, as
well as a lock to serialize transactions.

2. Related Work
Along with the comprehensive studies on contention
managers [1, 8, 13, 14, 16], there has been recent inter-
est in transaction schedulers to improve conflict man-
agement. Yoo and Lee implemented an adaptive trans-
action scheduler (ATS) [17] which tracks the system
contention level, and sends transactions to a sched-
uler to be serialized whenever that level surpasses a
given threshold. The contention is measured counting
the transaction aborts of each thread and contrasting
it with past aborts. The formula can be configured to
give more importance to either the abort history or
the present conflict. Dragojević et al. [7] devised the
SHRINK scheduler, which predicts conflicts between
transactions by tracking the memory addresses they ac-
cess. The algorithm is based on the concept of temporal
locality [2, 15], which suggests that transactions exe-
cuted recently before a given transaction Tx accessed
a similar set of adresses than Tx. When transactions
read, commit or abort, memory addresses are added to
predicted read and predicted write sets. Upon start, a
transaction checks whether its memory accesses belong
to the sets. If so, transactions are serialized in a global
queue. SHRINK also implements a contention detector
that activates the prediction algorithm only under high
contention cases. This contention detector is calculated
by counting aborted and committed transactions. One
of the main features of the algorithm is that it is a proac-
tive scheduler that can apply a policy before a transac-
tion aborts for the first time. The lock acquisition pol-
icy of transactions affects the performance of SHRINK,
since in lazy lock acquisition conflicts are detected only
at commit time and last for less time. This situation lim-



Transaction data:
emph{Other transaction information...}

ID: Number
Twohop: Array

\\list of transaction IDs that had a two-hop conflict
Conflicted: Number

\\Transaction ID of the last one-hop lost conflict
Killed: Number

\\Transaction ID of the last one-hop won conflict
Backoff: Number

\\Current backoff time to wait

Upon conflict between T1 and T2:
if (T2.conflicted is not NULL
and T2.conflicted <> T1.ID)

Add T2.conflicted to T1.twohop
if (T2.killed is not NULL
and T2.killed <> T1.ID
and T2.killed <> T2.conflicted)

Add T2.killed to T1.twohop
if (T1.conflicted is not NULL
and T1.conflicted <> T2.ID)

Add T1.conflicted to T2.twohop
if (T1.killed is not NULL
and T1.killed <> T2.ID and T2.killed <> T2.conflicted)

Add T1.killed to T2.twohop
if (T1 won)

T2.conflicted = T1.ID
T1.killed = T2.ID

else
T1.conflicted = T2.ID
T2.killed = T1.ID

end if

Upon abort:
Unegister transaction in executing array
if (queue lock.owned)

Unlock queue lock

Upon commit:
Unregister transaction in executing array
Empty twohop
if (queue lock.owned)

Unlock queue lock

Figure 3. RELSTM pseudocode for the commit, abort and
conflict events of a transaction. The code uses a global array
to register and deregister transactions in execution, as well
as a lock to serialize transactions.

its the capacity of the the algorithm to detect a conflict
when a transaction starts.

Steal-on-abort [3] is another scheduling technique in
which aborted transactions are reordered and serialized
after the winning transaction. This technique reduces
the number of aborts when collisions between the same
transactions are frequent, since a rolled back transac-
tion is not able to restart until the winner is not in exe-
cution anymore.

CAR-STM [6] is a scheduler that ensures the same
two transactions will not collide more than once. It

Benchmark Parameters
Bayes -e8 -i2 -n10 -p40 -r4096 -v32
Genome -g16384 -n16777216 -s64
Intruder -a10 -l128 -n262144 -s1
Labyrinth -i random-x512-y512-z7-n512.txt
SSCA2 -s20 -i1.0 -u1.0 -l3 -p3
Vacation High -n2 -q90 -u98 -r1048576 -T4194304
Vacation Low -n4 -q60 -u90 -r1048576 -T4194304
Kmeans High -m40 -n40 -T0.00001 -i random-n65536-d32-c16.txt
Kmeans Low -m15 -n15 -T0.00001 -i random-n65536-d32-c16.txt
Yada -a15 -i ttimeu1000000.2

Table 1. Parameters used in the STAMP benchmark.

maintains a queue for each core where transactions are
run in the order they arrive. Upon collision, the aborted
transaction is serialized in the queue of the winner core,
effectively serializing the loser after the winner. CAR-
STM also uses a conflict-probability prediction rou-
tine to compute collision probabilities before they oc-
cur. However, this routine relies on conflict informa-
tion specifically given by the application, which in most
cases is hard to provide.

LO-SER [10] is a transaction serialization mecha-
nism which serializes conflicted transactions to avoid
the occurrence of the same conflict. The scheduler is
completed with a set of adaptive algorithms that ap-
ply LO-SER only when enough contention is detected,
either after aborting a number of times or after reach-
ing a certain general contention level. The LO-SER al-
gorithm itself is in charge of transaction serialization.
This approach avoids the use of queues and is based on
condition variables. Each transaction owns a condition
variable and after a conflict between two transactions,
the aborted transaction waits on the condition variable
of the winner. Due to the inherent properties of con-
dition variables, several transactions can be serialized
after the winner, being released after it commits.

Bimodal [5] is a scheduler that resorts to serializa-
tion in order to reduce repeated aborts of the same
transactions. Bimodal is able to distinguish between
reading and writing transactions, therefore being able
to give different priorities depending on such types. In
read-dominated workloads, attempting to serialize in
every conflict may result in serializing read transactions
that shouldn’t wait for each other. To avoid this prob-
lem, a model is proposed in which each core has its own
transactions queue, and share one general queue meant
for read-only transactions. Bimodal alternates between
2 modes, or epochs, that differ in the priority that is
given to read-only and write transactions. The algo-



rithm serializes write transactions in each core and read
transactions in the general queue. This mechanism al-
lows concurrent execution of read transactions in read
epochs.

Speculative Contention Avoidance (SCA) [4] is an-
other prediction algorithm based on how many times
a transaction has aborted already. It relies on a con-
tention predictor that tracks the contention level of each
thread. This predictor acts as a counter and is incre-
mented when a transaction aborts in the thread. When
a transaction commits, the counter is reset. Once the
predictor surpasses a given threshold, contention is as-
sumed to be too high and transactions arriving to the
thread are serialized. This technique reduces the num-
ber of aborts under high contention and can be applied
before transactions are executed for the first time.

3. RELSTM implementation
RELSTM aims to analyze how conflict relations be-
tween transactions impact the performance of STMs.
We have implemented a first version of the algorithm in
order to assess the benefits of such analysis. RELSTM
uses first and second hop conflict information to sched-
ule transactions, along with a general array to register
and track transactions currently in execution.

Each transaction Tx is identified by a unique ID
number, as well as different fields to track transactions
that conflicted with it. The field conflicted stores the ID
of the last transaction that collided and won against Tx.
The field killed holds the ID of the last transaction that
collided and lost against Tx. The array twohop keeps
the two-hop transactions of the opponents in a conflict
with Tx. Transactions can also access a global lock
named queue lock in order to be serialized.

Figure 1 depicts the flowchart of the scheduler al-
gorithm. Figure 2 shows the RELSTM pseudocode for
the algorithm part executed when a transaction starts.
First, the transaction registers itself as executing and
then it checks its conflicted field for one-hop conflicts.
If there has been a previous collision with an opponent
still in execution, the transaction blocks itself on the
global lock in order to be serialized. Otherwise, it be-
gins checking its two-hop conflicts and tracking which
ones are still running. If the rate of executing two-hop
transactions is greater than or equal to a given system
constant TWOHOP RATE, the transaction is backed
off. The reason why the two types of collisions are not
checked at the same time if they both exist is to avoid

(a) Low number of threads

(b) High number of threads

Figure 4. Speedup of RELSTM over CAR-STM using the
STAMP suite.

excessive waiting penalty to transactions that have mul-
tiple relations.

Figure 3 shows the RELSTM pseudocode for the
conflict, abort and commit events of a transaction.
When two transactions conflict, the collision is tracked
and used in the scheduling algorithm. First, transac-
tions add the opponent’s two-hop relations. Then, the
transaction that won the conflict adds the opponent to
its killed field, while the transaction that lost populates
its conflicted field.

Upon commit and abort, transactions deregister
themselves in the executing array and proceed to re-
lease the global lock if they own it.

For the implementation we chose TinySYM 1.0.3 [12],
adding the RELSTM code in C on it. This serves as an
initial proof of concept to evaluate if this research di-
rection helps improve the performance of an existing
STM. We plan to add more optimizations in the future.
We chose TinySTM for its ease of code modification:



Figure 5. Speedup of RELSTM over TinySTM 1.0.3 using
the STAMP suite. Scenarios with low thread number

it has documented code as well as an active support fo-
rum. Another reason that lead us to choose TinySTM is
that many STMs and schedulers, including CAR-STM,
have been built on it.

We added to TinySTM the extra transaction fields
and tracked the 1-hop and 2-hop transactions in the
code sections where conflicts are detected. After a roll-
back, we redirect the code flow to our own scheduler,
written in a separate code file.

4. Evaluation
We have evaluated RELSTM against the different
tests in the STAMP [11] benchmark and compared
the results to the performance achieved by TinySTM
1.0.3 [12]. We have also compared our STAMP results
to those of CAR-STM [6] built over TinySTM 1.0.3.

We tested the different STMs on a PowerEdge R815
machine, with a total of four 16-core processors AMD
Opteron 6272 at 3,2 GHz, a total of 64 cores and 128
Gb of RAM to run the tests. The parameters used in the
benchmarks appear in Table 2. TinySTM was config-
ured using visible reads, modular contention manager
and a write-back design with encounter-time lock ac-
quisition.

The system parameter TWOHOP RATE was chosen
to be 0.3. After several experiments, it became apparent
that a value less than 0.5 (Tx has half of its 2-hop trans-
actions in execution) was enough to justify a backoff,
since there are enough active transactions in the system
for a collision. Values inferior to 0.2 (Tx has 20% of
its 2-hop transactions in execution) proved to be more
ineffective, as the backoff was too big a penalty for the
minor chance of collision.

Figure 6. Speedup of RELSTM over TinySTM 1.0.3 using
the STAMP suite. Scenarios with high thread number

To the best of our knowledge, TinySTM is one of
the most efficient STMs available and has been contin-
uously updated and optimized. We chose it to assess
whether proactive transaction scheduling could im-
prove the performance of an already optimized STM.

Since the STAMP results are not deterministic, we
ran each test 10 times and averaged the results.

The graphs shown in this section represent speedup
relative to RELSTM, namely, (tx−tR)

tR
where tR is the

test completion time taken by RELSTM and tx is the
test completion time of the other STM in the compari-
son. Higher positive values are better, zero values rep-
resent no performance gain, whereas negative values
represent performance drop.

Figure 4 shows the speedup achieved with REL-
STM over CAR-STM. The figure is divided into low
number of threads (from 1 to 4) and high number of
threads (from 8 to 64). Figure 7 and figure 8 show the
absolute benchmark completion times of both STMs.
The figures show that for low number of threads, REL-
STM achieves more throughput, being in some cases



Figure 7. Benchmark completion time of RELSTM and
CAR-STM with low thread number (using the STAMP
suite).

(SSCA2) more than 16 times faster. The overhead
CAR-STM imposes seems too harsh for low level of
concurrency, and transactions take longer to finish.
With higher number of threads the performance im-
provement of RELSTM, while still considerable, is
smaller, suggesting that with a high enough number of
cores both STMs would converge. CAR-STM reaches
better completion times as concurrency and contention
increase. Still RELSTM manages to complete the tests
faster and has a performance gain regardless of the con-
currency level, with the exception of some benchmarks
with 64 threads where it is possible to see a small per-
formance drop. An interesting case is the Yada test for
64 threads, where the tendency to converge with CAR-
STM seems to break. Yada leads to a very high number
of aborts, and CAR-STM seems to lose throughput in
that highly concurrent case. We think that for CAR-
STM the cause might be aborted transactions being
serialized unevenly in a few queues. This would lead to
a situation where most of the work is done by a small
set of cores, hindering parallelism.

Figure 8. Benchmark completion time of RELSTM and
CAR-STM with high thread number (using the STAMP
suite).

Figure 5 depicts the speedup of RELSTM over
TinySTM version 1.0.3 with low number of threads
(from 1 to 4). Figure 9 shows the same information in
absolute benchmark completion times of each STM.
The figures show a noticeable performance improve-
ment for the Bayes and Kmeans High tests, while
Genome, Vacation and Kmeans Low do not achieve
a noticeable performance gain. In these last tests REL-
STM did not manage to improve completion times but
as shown, the extra code did not impose an overhead.
Some performance degradation can be seen in some
tests.

The speedup over TinySTM in high number of
threads (8 to 64) is shown in Figure 6. Figure 10 shows
the same information in absolute completion time of
each STM. In this case a dramatic performance gain is
achieved for the Bayes, Vacation Low and Yada tests.
In these tests, TinySTM leads to a high number of
aborts, while RELSTM mitigates them via serializa-
tion and backoff. Some cases obtain results from 200
to 600 times faster. The other tests yield a more moder-



Figure 9. Benchmark completion times of RELSTM and
TinySTM with low thread number (using the STAMP suite).

ate but still noticeable improvement, with the exception
of Labyrinth and SSCA2 where there is a degradation.
Those tests have a very low number of aborts even with
high concurrency, and the RELSTM algorithm is not
activated frequently. Nevertheless, the speedup over
TinySTM still improves performance in most cases.

5. Conclusion
This paper suggests that a proactive approach, based
on tracking two-hop relations between transactions, to
transaction scheduling can improve performance in sit-
uations of high thread count and high abort rates.

There are several additional improvements we hope
to explore. A natural optimization is to set a con-
tention threshold for activating the scheduler. However,
it seems that the overhead for tracking the number of
transactions and aborts accounts for most of the cost of
RELSTM; thus,significant improvement will necessi-
tate a very fast mechanism for registering and dereg-
istering transactions. We also plan to compare REL-
STM with other transaction schedulers, in particular

Figure 10. Benchmark completion times of RELSTM and
TinySTM with high thread number (using the STAMP suite).

Shrink and LO-SER, as well as perform evaluations
using STMBench7 [9].

Finally, it would be interesting to explore other
proactive policies, going beyond two-hop conflicts.
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