
Boosting Timestamp-based Transactional Memory
by Exploiting Hardware Cycle Counters ∗

Wenjia Ruan, Yujie Liu, and Michael Spear
Lehigh University

{wer210, yul510, spear}@cse.lehigh.edu

Abstract
Time-based transactional memories typically rely on a shared
memory counter to ensure consistency. Unfortunately, such a
counter can become a bottleneck. In this paper, we identify prop-
erties of hardware cycle counters that allow their use in place of
a shared memory counter. We then devise algorithms that exploit
the x86 cycle counter to enable bottleneck-free transactional mem-
ory runtime systems. We also consider the impact of privatization
safety and hardware ordering constraints on the correctness, per-
formance, and generality of our algorithms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Algorithms, Design, Performance

Keywords Transactional Memory, Privatization, rdtscp, Coun-
ters

1. Introduction
Most high-performance Software Transactional Memory [19]
(STM) implementations reduce the common-case overhead of val-
idation by using timestamps. The technique, first employed in the
LSA [17] and TL2 [4] algorithms, is straightforward: every writer
transaction increments a global clock during its commit phase, and
writes the resulting value into every lock that it releases. All trans-
actions read the clock when they begin, and whenever reading a
new location, they check if the corresponding lock stores a clock
value that is less than this start time; if so, the location can be
read without validation. In this manner, the costly quadratic vali-
dation overheads of previous systems [7, 10, 13] can be avoided.
Since 2006, virtually every single-version STM that uses ownership
records has employed a global shared counter [5, 6, 12, 15, 24–26].

There are two problems with global shared clocks. First, clock-
based techniques for avoiding validation are heuristic, and in the
worst case, a clock-based STM might still validate the entire read
set on every read, resulting in quadratic overhead. Second, the use
of a shared memory counter as the clock can become a scalabil-
ity bottleneck. Since every writer transaction must increment the
counter during its commit operation, workloads consisting of fre-
quent small writing transactions experience considerable cache in-
validation traffic as the counter moves among processors’ caches.

The open-source release of the TL2 algorithm [16] offered
heuristics for reducing the overhead of counter increments. The
main observation was that that timestamp-based STM does not re-
quire a strictly increasing counter; monotonicity suffices. Thus if
a compare-and-swap (CAS) fails to increment a counter, then

∗ This work was supported in part by the National Science Foundation
through grants CNS-1016828 and CCF-1218530.

the return value of the CAS can be used in place of a new value. Of
course, this technique is itself a heuristic, and while it lessens the
impact of contention over the shared counter, scalability problems
can still remain for small, frequent writer transactions. A second
technique pioneered by TL2 was to skip counter increments with
some probability. However, this technique is effective only if suc-
cessive transactions rarely modify the same data.

An alternative to shared counters, first proposed by Riegel et al.,
is to use the multimedia timer present in some systems in place of a
shared memory clock [18]. Riegel’s system used the real-time MM-
Timer built into Altix machines. This hardware timer is a read-only
device, and thus concurrent accesses by multiple processors do not
create contention. However, as an off-chip hardware component,
the MMTimer operates at a considerably slower frequency than a
processor core. Consequently, Riegel’s STM needed to manually
address clock skew and compensate for the clock’s low frequency.

In this paper, we explore whether an STM algorithm can be
built upon existing in-core timing hardware, rather than an external
(hardware or shared memory) clock. Modern processors expose a
user-mode accessible “tick” counter, which returns the number of
processor cycles which have passed since boot time, but the details
of these counters vary among ISAs and even micro-architectures.
As appropriate, we built STM systems that employed the processor
tick count in place of a shared memory clock. Our primary findings
are that (a) there are memory fence and ordering requirements that
must be enforced when using these counters to implement an STM,
and (b) the use of hardware clocks to accelerate STM is effective
for STM libraries that do not offer privatization safety, but less
effective for libraries that are privatization safe.

The remainder of this paper is organized as follows. Section 2
discusses hardware cycle counter properties in the x86 and SPARC
architectures, and identifies potential pitfalls when using these
counters in place of a shared memory clock. Section 3 develops
STM algorithms based on the x86 rdtscp instruction. Section 4
considers techniques for making these algorithms privatization
safe. Section 5 evaluates our algorithms on single and dual-chip
x86 systems, and Section 6 concludes.

2. Cycle Counters
The behavior of hardware cycle counters varies among both ISAs
and micro-architectures, and not all cycle counters are suitable for
our needs. To express the desired behaviors of hardware counters,
we use the notation that p is a processor, and that vp is the value
that is returned to p when it reads its cycle counter by executing
instruction tp.1

The first issue is one of local monotonicity. For a strictly in-
creasing clock on processor p, tp1 → tp2 ⇔ vp1 < vp2 will always

1 The properties we explore in this section bear strong similarity to the
std::chrono::steady clock object in the C++11 standard.

1 2013/3/4

hold. For a monotonically increasing clock, the weaker property
that tp1 → tp2 ⇒ vp1 ≤ vp2 will hold.

The second issue is one of global monotonicity. For two proces-
sors p and q, we wish to know abstractly that tp1 → tq2 ⇔ vp1 < vq2 .
Unfortunately, in the absence of some event that establishes a tim-
ing relationship, we cannot “compare” the time values observed on
different processors even if we know instruction tp1 happened be-
fore tq2. In the opposite direction, we cannot deduce the happened
before relation by comparing time. To compensate for this, we con-
sider the following weaker scenario:

Let p read its cycle counter as vp1 , then let p write some
value to location M , then let q read from M , then let q read
its cycle counter as vq2 .

In this setting, we can ask the following:

• Does tp1 → tq2 ⇔ vp1 < vq2 hold if p writes an arbitrary value to
M?
• Does tp1 → tq2 ⇔ vp1 < vq2 hold if p writes vp1 to M?

On the Oracle UltraSPARC T2 processor, the tick register can
be read to access the cycle counter. In experimental evaluation we
determined that this counter is not (even locally) monotonically
increasing, and thus is not suitable for our needs.2

On an Intel Xeon X5650 (Sandy Bridge) processor, we found
that the rdtsc instruction was locally monotonic, but not strictly
increasing. The processor also offers an rdtscp instruction,
which is considered to be “synchronous” (it has load fence se-
mantics, and does not complete until preceding loads complete).
This variant is strictly increasing.

We subsequently explored the global monotonicity of the x86
clocks, and found that the last property held for the rdtscp
instruction. That is, when there is a data dependence between the
rdtscp and subsequent store by p, then tp1 → tq2 ⇔ vp1 < vq2 .
Furthermore, the property holds on both single-socket and dual-
socket multicore processors. The guarantee is provided not only
among cores of the same chip, but between chips.

To validate our findings, we spoke with engineers at Intel and
AMD. They claimed that:

On modern 64-bit x86 architectures, if one core writes the
result of an rdtscp instruction to memory, and another
core reads that value prior to issuing its own rdtscp in-
struction, then the second rdtscp will return a value that
is not smaller than the first.

This property is expected to be preserved by future x86 64 proces-
sors. Furthermore, the x86 cycle counter has a constant frequency
independent of the operating frequency of the processor. This prop-
erty is critical, since otherwise power management decisions could
cause clock drift among cores or CPUs.

However, it is important to understand the constraints on how
rdtsc and rdtscp may be ordered within the processor. First,
rdtsc may appear to reorder with respect to any memory oper-
ation that precedes or follows it. The rdtscp instruction cannot
bypass a preceding load, but can bypass a preceding store. Further-
more, the rdtscp instruction can appear to execute after a subse-
quent memory instruction.

3. Applying rdtscp to STM
We now consider how the x86 cycle counter can be used to acceler-
ate an STM implementation. We focus on existing and well-known
algorithms based on ownership records (orecs).

2 Subsequent to the conduct of this research, we learned that there is also
an stick register with stronger properties. Exploration of its use in the
algorithms presented in this paper is future work.

Algorithm 1: STM-Related Variables
GLOBAL VARIABLES
transactions : Tx[] // thread metadata
timestamp : Timestamp // see Algorithm 4
orecs : OwnershipRecord[] // orec table

PER-TRANSACTION VARIABLES
my lock : 〈Integer,Integer〉 // 〈1, thread id〉
start : Integer // start time
end : Integer // end time
writes : WriteSet // pending writes by this Tx
reads : ReadSet // locations read by this Tx
locks : LockSet // locks held by this Tx

Algorithm 2: Check-once Timestamps
TXBEGIN()

1 start← timestamp.read()
2 reads← writes← locks← ∅

TXREAD(addr)

3 if addr ∈ writes then return writes[addr]

4 v ← ∗addr
5 o← orecs[addr].getValue()
6 if o ≤ start and ¬Locked(o) then
7 reads← reads ∪ {addr}
8 return v

9 else ABORT ()

TXWRITE(addr, v)

10 writes← writes ∪ {〈addr, v〉}

TXCOMMIT()

11 if writes = ∅ then return
12 ACQUIRELOCKS ()
13 VALIDATE(0)
14 WRITEBACK()
15 end← timestamp.getNext()
16 RELEASELOCKS(end)

3.1 Preliminaries
In orec-based STM with timestamps (such as TL2 and TinySTM),
orecs either store the identity of a lock holder, or the most recent
time at which the orec was unlocked. Since rdtscp returns a 64-
bit value, we require orecs to be 64 bits wide. We also require
atomic 64-bit loads. We reserve the most significant bit of the orec
to indicate whether the remaining 63 bits represent a lock holder
or a timestamp. This change does not have a significant impact on
the risk of timestamp overflow, since a machine operating at 3GHz
could operate for years without overflowing a 63-bit counter.

For simplicity in our initial discussion, we will consider algo-
rithms with buffered update/commit-time locking, and we will not
consider timestamp extension [6, 25]. Both of these features can be
supported without additional overhead. We will also assume a one-
to-one mapping of orecs to locations in memory, as it simplifies the
pseudocode.

3.2 Single-Check Ownership Records
We begin with an analysis of STM algorithms based on “check-
once” orecs [25]. Though less well known than “check-twice”
orecs, these algorithms offer lower per-access overhead, and avoid
some memory fences on processors with relaxed consistency.

2 2013/3/4

Algorithm 3: Helper Functions
ACQUIRELOCKS()

1 for each addr in writes do
2 if ¬ orecs[addr].acquireIfLEQ(start) then
3 ABORT ()

4 else locks← locks ∪ {addr}

RELEASELOCKS(end)

5 for each addr in locks do
6 orecs[addr].releaseTo(end)

WRITEBACK()

7 for each 〈addr, v〉 in writes do
8 ∗addr ← v

VALIDATE(end)

9 if end 6= start+ 1 then
10 for each addr in reads do
11 v ← orecs[addr].getValue()
12 if v ≥ start and v 6= my lock then ABORT ()

ABORT()

13 for each addr in locks do
14 orecs[addr].releaseToPrevious()

15 restartTransaction()

Algorithm 1 presents the basic metadata required for all orec-
based STM algorithms discussed in this paper. Algorithms 2 and 3
present a simplified framework for algorithms that use check-once
orecs. The novelty of such algorithms stems from the ordering of
accesses to the global clock relative to updates to shared memory.
In the commit operation, a transaction acquires locks, validates,
performs writeback, and then accesses the clock to attain a com-
pletion time. It uses this time as it releases its locks.

When a transaction begins, it accesses the clock to attain a
starting time. To read a location, it simply accesses that location,
and then checks that the orec is unlocked and contains a time earlier
than the transaction start time. There is no need to check the orec
before reading the location: such a check is effectively subsumed
by line 1. Suppose that a read-only transaction R begins at time T ,
and that a writing transaction W has not yet completed writeback
to location L, protected by ownership record OL. There are three
possibilities:
• If W has not acquired OL, then R can order before W .
• W has acquired but not released OL, in which case R’s check

of OL will cause it to abort.
• W completes writeback and acquires a timestamp after R starts.

Thus the time written to OL will be after R’s begin time, and R
will abort. (Note that this abort may be avoided with timestamp
extension).

Since in all cases, R cannot order after W while observing a value
of L from before W ’s commit, the read is consistent with all prior
reads, without a check of the orec between lines 3 and 4.

Single-check orec algorithms typically use a shared memory
global counter (as in Algorithm 4). It should be straightforward
to replace the read and update of the global clock with a call to
rdtscp. However, in the case of check-once orecs, this is not safe.
Recall that an rdtscp can appear to execute before a preceding
store operation. This creates the possibility of a location appearing

Algorithm 4: Timestamp Implementations
// Timestamp implementation based on global integer counter.
ts : Integer // initially 0

read()

return ts

getNext()

return 1 + AtomicIncrement(ts)

// Timestamp implementation based on hardware cycle counter.
read()

return rdtscp

getNext()

return rdtscp

to update after its orec is released, as lines 14 and 15 can seem to
reorder.

Such a reordering is incorrect, as it can lead to a thread ob-
serving inconsistent state. Suppose that transaction A has just com-
pleted line 13 en route to committing a write that changes location
L from value v to value v′, and that transaction B is about to ex-
ecute line 1. The correctness of single-check orecs relies on the
following:
• If B reads the timestamp (Line 1) before A increments the

timestamp at TxCommit (Line 15), B will abort if it attempts
to read L. The abort is required because the algorithm does
not guarantee ordering between A’s writeback (Line 14) and
B’s read of L (Line 4), and thus cannot guarantee that B will
observe v′.
• If B reads the timestamp (Line 1) after A increments the times-

tamp at TxCommit (Line 15), then either (a) the step that checks
the orec in B’s TxRead (Line 5) happens before A increments
the timestamp (Line 16), in which case OL will be locked and
B will conservatively abort, or (b) B will observe v′ when it
reads L. This follows from program order in each thread.

If Line 15 of thread A attains a timestamp before some memory
update by thread A on Line 14 completes, then although it appears
that A commits at time t, A’s update of L from v to v′ does not
occur until some time t′ > t. Thus the following order is possible:

1. A increments the timestamp at TxCommit line 15 (reordered);

2. B reads the timestamp at line 1 in TxBegin;

3. A executes line 14 and line 16 in TxCommit (reordered);

4. B checks orec at line 5 in TxRead.

In this case, B reads the location (Line 4) before A updates
it (Line 14), but since A gets its timestamp (Line 15) before B
starts (Line 1) and A releases its locks (Line 16) before B checks
the orec (Line 5), B does not abort. B’s continued execution with
inconsistent state is not merely a violation of opacity [8], because
it will not even be detected by validating B.

The latest IA32/x86 64 specification [11] indicates that it is pos-
sible to prevent an rdtsc instruction from bypassing a preced-
ing load by either (a) using an LFENCE instruction, or by using
rdtscp. However, the specification does not give any mechanism
for preventing an rdtscp from bypassing a preceding store. In
empirical evaluation, we observed that line 15 can appear to ex-
ecute before line 14, even when using rdtscp (with its implicit
LFENCE).

3 2013/3/4

Algorithm 5: Check-twice Timestamps
TXBEGIN()

1 start← timestamp.read()
2 reads← writes← locks← ∅

TXREAD(addr)

3 if addr ∈ writes then return writes[addr]

4 o1 ← orecs[addr].getValue()
5 v ← ∗addr
6 o2 ← orecs[addr].getValue()
7 if o1 = o2 and o2 ≤ start and ¬Locked(o2) then
8 reads← reads ∪ {addr}
9 return v

10 else ABORT()

TXWRITE(addr, v)

11 writes← writes ∪ {〈addr, v〉}

TXCOMMIT()

12 if writes = ∅ then return
13 ACQUIRELOCKS ()
14 end← timestamp.getNext()
15 VALIDATE(end)
16 WRITEBACK()
17 RELEASELOCKS(end)

The solution we employ is to place an atomic fetch-and-add
instruction between lines 14 and 15. This instruction adds zero to
a thread-local variable, and thus has no effect. However, as an x86
atomic, it enforces ordering in that it happens after line 14. Since
it is a read-modify-write (RMW) operation, it entails a read, and
thus the subsequent rdtscp on line 15 must order after it. When
coupled with the fact that there is a data dependence between lines
15 and 16, this fence ensures that an rdtscp on line 15 has the
correct behavior.3

Let us now consider the use of rdtscp on line 1. In this case,
the LFENCE semantics ensure that the read does not bypass pre-
ceding loads, which suffices for the entry to a critical section or
transaction. However, it is possible for the rdtscp to appear to
delay. Note that it cannot delay past line 6, due to a data depen-
dence. However, suppose that transaction A is updating location L
from v to v′ when transaction B begins. If thread B Line 1 occurs
after thread B Line 4, then a possible ordering is

1. A completes validation at line 13;

2. B dereferences the address at line 4 in TxRead (reordered);

3. A completes writeback and finishes TxCommit;

4. B reads timestamp at line 1 (reordered);

5. B checks orec at line 5 in TxRead.

In this case, B will read v, but since thread A Line 16 precedes
thread B Line 1, thread B will not abort. It is not clear that an
LFENCE after line 1 suffices to prevent this error, though in practice
we did not observe errors even in the absence of such a fence.

3.3 Check-Twice Ownership Records
Listing 5 presents a canonical lazy STM with check-twice orecs.
This style of STM algorithm is embodied by TL2 [4], TinySTM [6],

3 It is not clear whether an MFENCE would suffice in place of an atomic
RMW. Fortunately, on modern x86 processors, the RMW operation tends
to have lower latency than MFENCE.

and most other orec-based algorithms. While ordering is required
between lines 4 and 5, and between lines 5 and 6, which can result
in more memory fences than single-check orecs, there is a useful
savings at commit time: often, validation can be avoided. When the
timestamp is implemented as a shared memory counter, a transac-
tion that successfully increments the counter from the value it ob-
served on line 1 is assured that no transaction changed the contents
of memory during its execution, and thus validation is unnecessary.
While there is no asymptotic difference in instructions (each of R
reads incurs more overhead during the read operation itself, and
then avoids R validation instructions at commit time), validation
operations at commit time are less likely to hit in the L1 cache, and
thus in the absence of memory fences, check-twice orecs with a
shared memory counter can expect a slight performance advantage
over check-once orecs, particularly with timestamp extension [18].

Unfortunately, when rdtscp is used in place of a shared mem-
ory counter, this commit-time validation savings is lost, as it is im-
possible for the return value of line 14 to be only one greater than
the return value of line 1. Thus for STM algorithms with check-
twice orecs, we can expect a slowdown (especially at one thread) if
we replace the shared memory counter with a hardware counter.

The question remains as to whether it is correct to use rdtscp.
Observe that there are two points at which the counter is accessed.
The first is at begin time (line 1), where the same analysis as with
single-check orecs applies: the rdtscp does not occur “too early”,
but it seems possible that the instruction can delay “too late”. The
second is at commit time. There are data dependencies between the
read of the counter (line 14) and the validation (line 15) and lock
release (line 17) operations. Thus delay of the instruction is not
possible, and the replacement of a shared memory counter with a
hardware counter will not affect correctness. Let us now consider
the case where the rdtscp bypasses a preceding store operation.
In this case, our concern is that line 14 executing before line 13
will compromise correctness. The key difference is that with check-
twice orecs, lines 4–6 alone suffice to ensure that if thread A Line
14 precedes thread B Line 1, then on an access to L, B will abort
unless thread B Line 4 follows thread A Line 17. That is, B cannot
safely read a location that is locked by A but may have already been
updated.

Note that if thread A Line 14 were reordered before thread A
Line 13, then when thread A Line 14 precedes thread B Line 1,
B might be able to execute lines 4–6 before thread A Line 13. In
this case, B’s read of L will appear to occur before A commits.
However, since B believes it started after A, if B reads L again,
or if B reads some other location written by A after thread A
completes Line 17, B will not detect an inconsistency. Fortunately,
this problem is averted since thread A Line 13 is implemented
with the atomic cmpxchg instruction. Since the instruction entails
both a load and a store, and since rdtscp has the effect of being
preceded by an LFENCE, thread A Line 14 cannot bypass thread
A Line 13. Note that as with single-check orecs, it appears that
some ordering must be enforced between lines 1 and 4. Again, it
is not clear that an LFENCE suffices, though in practice we did not
observe errors even in the absence of an LFENCE.

3.4 Timestamp Extension
A common practice in STM algorithms is to “extend” a transac-
tion’s start time to avoid aborts in the read function (Algorithm 2
line 9 and Algorithm 5 line 10). The technique is simple [18, 25]:
if transaction T is reading L for the first time and OL is newer than
T.start, but no location in T.reads has been locked since T be-
gan, then it is safe to add L to T ’s read set and update T.start to
the value in OL. Intuitively, all prior loads and stores performed by
T would have been correct if T did not begin until after OL was

4 2013/3/4

locked, and thus T can simply update its start time to achieve the
illusion that it started later than it actually did.

Timestamp extension replaces the call to Abort with the se-
quence in Algorithm 6.

Algorithm 6: Timestamp Extension
1 tmp← timestamp.read()
2 VALIDATE(start)
3 start← tmp

Given the properties of rdtscp discussed above, it is correct to
use rdtscp in place of a shared memory counter only if ordering
can be guaranteed between the read of the timestamp and the call
to Validate(). As before, we use an LFENCE instruction to
attempt to provide this ordering, though no errors were observed
when the instruction was not used.

4. Privatization Safety
The current draft specification for adding TM to C++ [1] calls for
privatization safety [9, 15, 22, 25]. We now turn our attention to
mechanisms that make our algorithms from Section 3 privatization
safe.

4.1 The Privatization Problem
In general, privatization safety can be thought of as two related
problems [22], related to “doomed transactions” and “delayed
cleanup”. First, when a transaction Tp commits and makes some
datum D private, the STM library must ensure that subsequent
nontransactional accesses by Tp do not conflict with accesses per-
formed by transactions that have not yet detected that they must
abort on account of Tp’s commit. Second, when Tp commits, the
STM library must ensure that no transaction To that committed or
aborted before Tp has pending cleanup (a redo or undo log) to D.
The danger is that Tp’s nontransactional access to D could race
with that cleanup.

In general, there are two approaches to privatization safety. The
first is for Tp to block during its commit phase and wait for all
extant transactions to either commit or abort and clean up. This
technique has come to be known as quiescence [15]. The second
approach is to use orthogonal solutions to the two problems. The
approach, known as the Detlefs algorithm [14, 23], assumes a
write-back STM. In an STM with write-back, delayed cleanup can
be achieved by serializing the writeback phase of all committed
transactions, and doomed transactions can be detected before they
do harm by requiring them to poll a global count of committed
transactions on every read, and to validate whenever the count
changes.

4.2 Achieving Privatization Safety
Unfortunately, polling to solve the doomed transaction problem in-
troduces the very shared memory bottleneck that our use of cycle
counters seeks to avoid. Furthermore, since the cycle counter ad-
vances according to physical time, instead of upon writer transac-
tion commits, every poll of the counter would require a validation,
since every read would return a value > start. This would lead to
quadratic validation overhead. Instead, our privatization-safe algo-
rithms employ quiescence.

Algorithm 7 employs check-twice orecs and timestamp exten-
sion. Since it uses timestamp extension, we can employ a valida-
tion fence [22], rather than the more coarse-grained transaction
fence [22], for privatization safety. Whenever an in-flight transac-
tion Ti (one that has not reached its commit point) begins a vali-
dation, any concurrent committer Tc can be sure that either Ti is

Algorithm 7: Privatization Safety
TXBEGIN()

1 start← timestamp.read()
2 reads← writes← locks← ∅

TXREAD(addr)

3 if addr ∈ writes then return writes[addr]

4 while true do
5 o1 ← orecs[addr].getValue()
6 v ← ∗addr
7 o2 ← orecs[addr].getValue()
8 if o1 = o2 and o2 ≤ start and ¬Locked(o2) then
9 reads← reads ∪ {addr}

10 return v

11 if Locked(o2) then continue
// extend validity range

12 tmp← start
13 start← timestamp.read()
14 for each addr in reads do
15 v ← orecs[addr].getValue()
16 if v ≥ tmp then ABORT ()

TXWRITE(addr, v)

17 writes← writes ∪ {〈addr, v〉}

TXCOMMIT()

18 if writes = ∅ then
19 start←∞
20 return
21 ACQUIRELOCKS ()
22 end← timestamp.getNext()
23 VALIDATE(end)
24 WRITEBACK()
25 start←∞
26 RELEASELOCKS(end)

// Quiescence
27 for each tx in transactions do
28 while tx.start ≤ end do wait

doomed and will abort, or that Ti and Tc do not conflict, and Tc

need not wait on Ti. Note that a LFENCE appears necessary be-
tween lines 13 and 14, to ensure that a transaction does not declare
an updated start time which then occurs after validation has begun.

5. Evaluation
In this section we present performance results for several STM al-
gorithms that use rdtscp in place of a shared counter. For com-
pleteness of evaluation, we consider two categories of algorithms.
The first category is not privatization safe:
• LSA – The write-through version of the LSA algorithm [6].

This is a check-twice algorithm with extensible timestamps.
• LSA-Tick – LSA, but using rdtscp in place of a global shared

counter.
• Patient – A write-back version of LSA [24], which we aug-

mented to use check-once orecs.
• Patient-Tick – A variant of Patient that uses rdtscp.
• TL2 – TL2 features check-twice orecs and commit time lock-

ing, but does not have extensible timestamps [4]. Our version

5 2013/3/4

uses the “GV1” clock mechanism, which is equivalent to the
shared memory counter in LSA.
• TL2-Tick – TL2, extended to use rdtscp in place of a global

shared counter.

We also evaluate the following privatization-safe algorithms:
• NOrec – A privatization-safe algorithm that does not use

orecs [3].
• OrecELA – A variant of the Detlefs algorithm [12, 23], which

uses check-once orecs and extensible timestamps.
• ELA-Tick-1 – A version of Algorithm 7 using check-once

orecs.
• ELA-Tick-2 – A version of Algorithm 7 using check-twice

orecs.

All algorithms were implemented within the RSTM frame-
work [21], in order to minimize variance due to implementation ar-
tifacts. Experiments were performed on two machines, both based
on the 6-core/12-thread Intel Xeon X5650 CPU. The first machine
was a single-chip configuration with 12 hardware threads, the sec-
ond a two-chip configuration with 24 hardware threads. The under-
lying software stack included Ubuntu Linux 12.04, kernel version
3.2.0-27, and gcc 4.7.1 (–O3 optimizations). All code was com-
piled for 64-bit execution, and results are the average of 5 trials. We
evaluated STM algorithms on targeted microbenchmarks from the
RSTM suite, and also measured their performance on the STAMP
benchmarks [16]. As in prior work, we omitted Bayes and Yada
from the evaluation: Bayes exhibits nondeterministic behavior, and
the downloadable Yada crashes.

5.1 Microbenchmark Performance
The first claim we evaluate is whether hardware cycle counters can
be used to accelerate workloads with frequent small writer trans-
actions. Even in the absence of aborts, such a workload can fail to
scale adequately due to contention among transactions attempting
to update the shared memory counter.

Figures 1(a) and 1(c) present the performance of our STM algo-
rithms for a microbenchmark in which all transactions repeatedly
access the same hash table. The data structure is configured with
256 buckets and linear chaining. Transactions attempt to insert and
delete 8-bit keys with equal probability. Since the data structure is
pre-filled with half of the keys in the range, this results in 50% of
transactions performing update operations.

On the single-chip machine, the algorithms split into four cate-
gories. The most scalable algorithms are those that do not have any
bottlenecks in the STM implementation: the non-privatization-safe
orec algorithms. Since the benchmark has virtually no aborts, LSA-
Tick has the least overhead. This is expected for an algorithm with
eager locking and in-place update. The slight benefit observed by
TL2-Tick relative to Patient-Tick is due to the added cost of order-
ing in Patient-Tick (recall that Patient-Tick uses single-check orecs,
and thus requires more ordering in the commit operation).

The second group of algorithms are those that are not privatiza-
tion safe, but which suffer from contention on the shared memory
counter. The third group is the privatization-safe algorithms that
use orecs. Here, we see that at low thread counts, serialization of
writeback provides the best performance, but due to the frequency
of writer transactions, this becomes a bottleneck at high thread
counts. Thus at higher thread counts, the more heavyweight quies-
cence operation of our rdtscp-based algorithms performs better:
for small writer transactions, parallel writeback is more important.
The last category consists solely of NOrec. NOrec is known to per-
form poorly for workloads with small, frequent writer transactions.

On the dual-chip machine, we see roughly the same grouping.
However, three additional trends emerge. First, all algorithms ex-
perience a slowdown at two threads, due to inter-chip communica-
tion. Our operating system places threads as far apart as possible,
and thus with two threads, any shared STM metadata must bounce
between the caches of the two chips. The second new trend is that
contention for shared counters is higher. This leads LSA, TL2, and
Patient to perform much worse than their rdtscp-based counter-
parts. Since transactions are small, the overhead of quiescence re-
mains manageable, and thus the rdtscp-based privatization-safe
algorithms can perform almost as well as these unsafe algorithms.
Finally, writer serialization on a multi-chip system is particularly
costly, resulting in OrecELA and NOrec both failing to scale.

On the opposite end of the spectrum, Figures 1(b) and 1(d)
present the performance of these algorithms on a red-black tree.
80% of transactions perform lookups, with the remaining trans-
actions split equally between insert and remove operations. Since
the data structure is pre-populated with half of the keys in a 20-bit
range, the net effect is that 90% of transactions are read-only. Fur-
thermore, transactions are substantially larger, consisting of more
than two dozen reads on average.

This workload nullifies the benefits of using rdtscp: our
“Tick” algorithms require writers to validate at commit time while
their counterparts need not; the cost of quiescence is higher, since
committing writers must wait on long-running transactions to val-
idate; and shared memory counters are not a significant source
of contention in the first place. On the single-chip machine, we
see NOrec perform best at all thread counts, and rdtscp-based
algorithms perform a small constant factor worse than their non-
rdtscp counterparts. The effect is less pronounced on the dual-
chip system, since coherence traffic on shared counters is so severe,
and at high thread counts we see the privatization-safe rdtscp al-
gorithms outperforming OrecELA and NOrec.

The performance differences between quiescence and polling/
writer serialization are nuanced. To gain more insight into where
quiescence overheads lie, we instrumented the benchmark to count
cycles spent in the quiescence operation, as well as cycles in qui-
escence spent specifically waiting for a thread to validate. For the
hashtable, most of the overhead of quiescence came from cache
misses, not waiting. For the tree, the overhead was mostly due to
legitimate waiting, not cache misses. The implication is that for
workloads with large transactions and few conflicts, quiescence
will be a significant overhead.

5.2 STAMP Performance
The variety of behaviors exhibited by the different STAMP bench-
marks provide additional insight into the benefits and weaknesses
of our rdtscp-based algorithms. Figures 2 and 3 present results
for the single-chip system; Figures 4 and 5 present results for the
dual-chip systems.

Intruder Intruder features transactions of varying lengths, with a
mix of read-only and writing transactions. One characteristic ex-
hibited within each larger transaction is that the early accesses
are more likely to participate in a conflict than later accesses. In
polling-based privatization-safe algorithms, this behavior is imma-
terial to privatization overhead, since a committing writer does not
wait for in-flight transactions. However, with quiescence, a com-
mitting writer must wait. The nature of orec-based algorithms is
such that a transaction will not validate and detect a conflict un-
less it reads a location that cannot be added to its read set. Thus
quiescence-based algorithms spend a long time waiting for trans-
actions that ultimately abort, but that never detect the need to
validate. This overhead significantly degrades the performance of
our privatization-safe rdtscp algorithms. Otherwise, the use of

6 2013/3/4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4 5 6 7 8 9 10 11 12

T
h
ro

u
g
h
p
u
t
(1

0
0
0
 T

x
/s

e
c
)

Threads

LSA
LSA-Tick

Patient
Patient-Tick

TL2
TL2-Tick
OrecELA

ELA-Tick-1
ELA-Tick-2

NOrec

(a) Hash Table, single-chip

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12

T
h
ro

u
g
h
p
u
t
(1

0
0
0
 T

x
/s

e
c
)

Threads

(b) Red-Black Tree, single-chip

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
h
ro

u
g
h
p
u
t
(1

0
0
0
 T

x
/s

e
c
)

Threads

(c) Hash Table, dual-chip

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
h
ro

u
g
h
p
u
t
(1

0
0
0
 T

x
/s

e
c
)

Threads

(d) Red-Black Tree, dual-chip

Figure 1: Microbenchmark results. Hashtable experiments are configured with 256 buckets, 8-bit keys, and a 0% lookup ratio. Red-Black
Tree experiments use 20-bit keys and an 80% lookup ratio.

rdtscp has no noticeable effect on performance for either plat-
form.

Genome Genome performance is dominated by a large read-only
phase, and transactions in general do not exhibit many conflicts.
Consequently, on both the single and dual-chip systems, all algo-
rithms perform at roughly the same level. The only differentiation
we see is that privatization-safe algorithms do not scale as well
due to their serialization/blocking at commit time. The more pro-
nounced separation on the dual-chip system illuminates that Ore-
cELA, with its polling and writer serialization, performs slightly
worse. This is no surprise, since this mechanism causes significant
coherence traffic.

SSCA2 In many regards, SSCA2 is modeled by our Hashtable
microbenchmark: all transactions perform writes, and transac-
tions are frequent and small. NOrec is known to perform poorly,
due to serialization at commit time, and on the dual-chip system,
OrecELA performs poorly as well. The only noteworthy result is to
see, again, that on a dual-chip system, the coherence traffic caused
by the shared counter causes a reduction in performance, and thus
the use of rdtscp proves beneficial.

KMeans In KMeans, transaction durations vary, particularly in
the high-contention workload. As a result, the cost of quiescence
can occasionally be high, resulting in a penalty on the single-chip
system for our privatization safe, rdtscp-based algorithms. While
this cost is significant on the single-chip system, the characteris-
tics of the dual-chip system have a mitigating effect. Since qui-
escence entails less contention and bus traffic than writer serializa-
tion, NOrec and OrecELA degrade on the dual-chip system, leaving

our rdtscp-based algorithms as the best privatization-safe algo-
rithms for this workload. A minor additional point is that under high
contention, we see performance anomalies for the write-through al-
gorithms. These variations are due to contention management; dif-
ferent backoff parameters would have smoothed the performance
of these curves.

Vacation Vacation is dominated by large writer transactions. The
size of these transactions serves as a buffer to minimize the over-
head from shared memory bottlenecks. Furthermore, since transac-
tions conflict rarely, timestamp extension does not occur often in
practice. As a result, for modest to large thread counts it is safe
to expect every transaction to validate at commit time. This elimi-
nates the main advantage of check-twice orecs. As a result, we see
comparable performance for all unsafe algorithms, and only slight
separation between the privatization-safe algorithms. As before, the
general trend is that quiescence is more expensive at lower thread
counts, and writer serialization more expensive at higher thread
counts.

Labyrinth The STAMP Labyrinth application contains racy reads,
which are safe in the context of the benchmark. In contrast to the
original Lee-TM algorithm [2] upon which it is based, Labyrinth
conflates memory speculation and control flow speculation: In
Labyrinth transactions, a quadratic number of uninstrumented
(nontransactional) reads are performed within a transaction, af-
ter which a linear number of locations are accessed via instru-
mented reads and writes. These instrumented accesses consist of
checks that ensure no intervening writes since the previous unin-
strumented reads, and then transactional updates to those same
locations. The programmer uses transaction restart when the non-

7 2013/3/4

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

LSA
LSA-Tick

Patient
Patient-Tick

TL2
TL2-Tick
OrecELA

ELA-Tick-1
ELA-Tick-2

NOrec

(a) Intruder

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(b) Genome

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(c) SSCA2

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(d) Labyrinth

Figure 2: STAMP results on the single-chip system (1/2).

transactional reads are shown to be inconsistent. This benchmark is
thus extremely artificial: neither a proper compiler-based TM, nor
a hardware TM, would be able to eliminate instrumentation of the
majority of accesses within a transaction. We thus restored the Lee-
TM form to the Labyrinth application for our tests. This change de-
couples control-flow speculation from transactional speculation on
memory accesses, but does not affect correctness. However, it re-
sults in transactions comprising a tiny fraction of overall execution
time, and thus all TM implementations scale equally well.

6. Conclusions and Future Work
In this paper, we explored the role that x86 hardware cycle coun-
ters can play in reducing the overhead of STM. In the absence
of privatization safety, our findings were positive: in workloads
for which shared memory counters are known to cause scalabil-
ity bottlenecks, our “Tick” algorithms performed well, while in
other cases our algorithms performed on par with their non-Tick
equivalents. When privatization is required, however, the use of cy-
cle counters prevents the use of some key optimizations, such as
polling to detect doomed transactions. On a single-chip system, this
generally led to worse performance, though on a dual-chip system
the penalty was mitigated by the ability our algorithms offer for
committing writer transactions in parallel.

There are several questions that this work raises for hardware
designers. Chief among them is the nature of ordering between
memory operations and accesses to the cycle counter. The use of an
atomic add appears to provide the “write before timestamp access”
ordering that our single-check orecs require, but it is less clear how
timestamp accesses and subsequent memory loads are ordered. In
particular, we placed LFENCE instructions between these accesses,

but the processor specification is not clear as to whether these
fences perform as we intended. Surprisingly, we did not observe
any change in program behavior when these fences were omitted.
Another question relates to generality: can the ARM, SPARC, and
POWER architectures provide cycle counters with strong enough
guarantees to support our algorithms?

In addition, the strong performance of our non-privatization-
safe algorithms leads to questions about the benefit of implicit pri-
vatization safety. Perhaps the absence of bottlenecks in our algo-
rithm will make strong isolation [20] viable for unmanaged lan-
guages, or at least provide an incentive for a new explorations of
programming models with explicit privatization. In this regard, we
are particularly excited that the use of rdtscp in place of accesses
to a global shared counter will enable a strongly isolated system to
implement individual loads and stores as mini-transactions that do
not suffer from scalability bottlenecks.

Acknowledgments
We thank Ravi Rajwar, Stephan Diestelhorst, and Dave Dice for
their advice during the conduct of this research. We are also grateful
to the anonymous reviewers for their many helpful suggestions.

References
[1] A.-R. Adl-Tabatabai and T. Shpeisman (Eds.). Draft Specification of

Transactional Language Constructs for C++, Aug. 2009. Version 1.0,
http://software.intel.com/file/21569.

[2] M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham, and I. Wat-
son. Lee-TM: A Non-trivial Benchmark for Transactional Memory.
In Proceedings of the International Conference on Algorithms and Ar-
chitectures for Parallel Processing, June 2008.

8 2013/3/4

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

LSA
LSA-Tick

Patient
Patient-Tick

TL2
TL2-Tick
OrecELA

ELA-Tick-1
ELA-Tick-2

NOrec

(a) KMeans (low contention)

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(b) KMeans (high contention)

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(c) Vacation (low contention)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(d) Vacation (high contention)

Figure 3: STAMP results on the single-chip system (2/2).

[3] L. Dalessandro, M. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In Proceedings of the 15th
ACM Symposium on Principles and Practice of Parallel Programming,
Bangalore, India, Jan. 2010.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Pro-
ceedings of the 20th International Symposium on Distributed Comput-
ing, Stockholm, Sweden, Sept. 2006.

[5] A. Dragojevic, R. Guerraoui, and M. Kapalka. Stretching Trans-
actional Memory. In Proceedings of the 30th ACM Conference on
Programming Language Design and Implementation, Dublin, Ireland,
June 2009.

[6] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning
of Word-Based Software Transactional Memory. In Proceedings of
the 13th ACM Symposium on Principles and Practice of Parallel
Programming, Salt Lake City, UT, Feb. 2008.

[7] K. Fraser. Practical Lock-Freedom. PhD thesis, King’s College,
University of Cambridge, Sept. 2003.

[8] R. Guerraoui and M. Kapalka. On the Correctness of Transactional
Memory. In Proceedings of the 13th ACM Symposium on Principles
and Practice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

[9] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd edition.
Synthesis Lectures on Computer Architecture. Morgan & Claypool,
2010.

[10] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Soft-
ware Transactional Memory for Dynamic-sized Data Structures. In
Proceedings of the 22nd ACM Symposium on Principles of Distributed
Computing, Boston, MA, July 2003.

[11] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel
Corp., 325462-044us edition, Aug. 2012.

[12] V. Marathe and M. Moir. Toward High Performance Nonblocking
Software Transactional Memory . In Proceedings of the 13th ACM

Symposium on Principles and Practice of Parallel Programming, Salt
Lake City, UT, Feb. 2008.

[13] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software
Transactional Memory. In Proceedings of the 19th International
Symposium on Distributed Computing, Cracow, Poland, Sept. 2005.

[14] V. J. Marathe, M. Spear, and M. L. Scott. Scalable Techniques for
Transparent Privatization in Software Transactional Memory. In Pro-
ceedings of the 37th International Conference on Parallel Processing,
Portland, OR, Sept. 2008.

[15] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. Hud-
son, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics for
Java STM. In Proceedings of the 20th ACM Symposium on Parallelism
in Algorithms and Architectures, Munich, Germany, June 2008.

[16] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford Transactional Applications for Multi-processing. In Proceedings
of the IEEE International Symposium on Workload Characterization,
Seattle, WA, Sept. 2008.

[17] T. Riegel, C. Fetzer, and P. Felber. Snapshot Isolation for Soft-
ware Transactional Memory. In Proceedings of the 1st ACM SIG-
PLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing, Ottawa, ON, Canada, June 2006.

[18] T. Riegel, C. Fetzer, and P. Felber. Time-Based Transactional Mem-
ory with Scalable Time Bases. In Proceedings of the 19th ACM Sym-
posium on Parallelism in Algorithms and Architectures, San Diego,
California, June 2007.

[19] N. Shavit and D. Touitou. Software Transactional Memory. In
Proceedings of the 14th ACM Symposium on Principles of Distributed
Computing, Ottawa, ON, Canada, Aug. 1995.

[20] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. Moore, and B. Saha. Enforcing Iso-
lation and Ordering in STM. In Proceedings of the 2007 ACM Con-

9 2013/3/4

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

LSA
LSA-Tick

Patient
Patient-Tick

TL2
TL2-Tick
OrecELA

ELA-Tick-1
ELA-Tick-2

NOrec

(a) Intruder

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(b) Genome

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(c) SSCA2

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(d) Labyrinth

Figure 4: STAMP results on the dual-chip system (1/2).

ference on Programming Language Design and Implementation, San
Diego, CA, June 2007.

[21] M. Spear. Lightweight, Robust Adaptivity for Software Transactional
Memory. In Proceedings of the 22nd ACM Symposium on Parallelism
in Algorithms and Architectures, Santorini, Greece, June 2010.

[22] M. Spear, V. Marathe, L. Dalessandro, and M. Scott. Privatization
Techniques for Software Transactional Memory (POSTER). In Pro-
ceedings of the 26th ACM Symposium on Principles of Distributed
Computing, Portland, OR, Aug. 2007.

[23] M. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. Ordering-
Based Semantics for Software Transactional Memory. In Proceedings
of the 12th International Conference On Principles Of DIstributed
Systems, Luxor, Egypt, Dec. 2008.

[24] M. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A Com-
prehensive Strategy for Contention Management in Software Trans-
actional Memory. In Proceedings of the 14th ACM Symposium on
Principles and Practice of Parallel Programming, Raleigh, NC, Feb.
2009.

[25] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai. Code
Generation and Optimization for Transactional Memory Constructs in
an Unmanaged Language. In Proceedings of the 2007 International
Symposium on Code Generation and Optimization, San Jose, CA, Mar.
2007.

[26] R. Zhang, Z. Budimlic, and W. N. Scherer III. Commit Phase in
Timestamp-based STM. In Proceedings of the 20th ACM Symposium
on Parallelism in Algorithms and Architectures, Munich, Germany,
June 2008.

10 2013/3/4

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

LSA
LSA-Tick

Patient
Patient-Tick

TL2
TL2-Tick
OrecELA

ELA-Tick-1
ELA-Tick-2

NOrec

(a) KMeans (low contention)

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(b) KMeans (high contention)

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(c) Vacation (low contention)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
im

e
 E

la
p
s
e
d
 (

s
e
c
o
n
d
s
)

Threads

(d) Vacation (high contention)

Figure 5: STAMP results on the dual-chip system (2/2).

11 2013/3/4

