
Enabling Speculative Parallelization
via Merge Semantics in STMs

Kaushik Ravichandran
Georgia Institute of Technology

kaushikr@gatch.edu

Santosh Pande
Georgia Institute of Technology

santosh@cc.gatech.edu

Abstract
STM (Software Transactional Memory) systems can be used to
speculatively parallelize irregular applications such as those based
on graphs and trees. While the transactional paradigm is suitable
for such speculative parallelization, STMs do not deal with the se-
mantics of speculation. In this paper we introduce merge semantics
for speculations.

STMs optimistically execute code and monitor the execution
for memory access conflicts. On detecting a conflict between a
pair of transactions the STM performs a rollback on one of them,
discarding all the work that has been done until that point. This
wastage leads to performance and scalability issues when there are
many transactional conflicts. The key insight of this paper is that
it is sometimes possible to salvage partially completed work and
merge it with the other transaction.

In this paper we motivate the need for the merge construct and
develop the ideas behind it. We propose a simple API which can be
used to define the merge operation. We discuss applications which
would benefit from this construct. We implement the supporting
framework and demonstrate its benefits on a Connected Compo-
nents benchmark and a Minimum Spanning Tree benchmark. We
report performance improvements of more than 75% when com-
pared to a traditional STM parallelization of the Minimum Span-
ning Tree benchmark. Our framework also demonstrates excellent
scalability when there are a large number of conflicts, a scenario
where traditional STM systems do not scale well.

1. Introduction
Multi-core processors are ubiquitous but programming for these
systems is notoriously difficult. With pitfalls like deadlocks, live-
locks, scheduling issues and race conditions, it is easy to see why
most programmers shy away from parallel programming. This has
led to a scenario where parallelism available at the hardware level
is quickly increasing but where parallel software models are inad-
equate. This makes it difficult for average programmers to harness
and exploit the available parallelism. However, HPC applications,
such as dense matrix applications, have seen great success in har-
nessing increasing amounts of parallelism. These applications have
tremendous amounts of parallelism which can easily be exploited
and are typically known as regular parallel applications.

Irregular parallel applications on the other hand are not so
easy to parallelize. These applications typically rely heavily on
pointer-based structures such as graphs and trees. An important
characteristic of these applications is that the exact elements and
therefore memory locations accessed are heavily data-dependent
and can not be known until run-time. This cripples potential static
analyses which are typically used to parallelize regular parallel
applications. These irregular parallel applications, however, also
benefit greatly from parallelization [24].

STM systems [29] can be used to speculatively parallelize irreg-
ular applications in limited circumstances. STMs provide an atomic
construct that provides an illusion of atomicity to code executed
within its scope. The programmer encompasses critical sections
(called transactions) within these constructs. The STM optimisti-
cally executes transactions and monitors for conflicts. On detecting
a conflict between a pair of transactions it will abort one of them
and retry, while the other continues. We will refer to the transac-
tion that will abort as the aborting transaction and the one that will
continue as the continuing transaction.

STMs provide significant performance benefits by enabling par-
allelization of codes with limited programmer effort and are be-
coming a popular construct in parallel programming models. Lan-
guages like C++ [18], Java [8] and even newer languages like
Chapel [30] provide STM interfaces.

Software transactions provide the programmer with atomicity
and isolation properties to achieve serial consistency while writing
parallel code. In theory, transactions can be used to execute highly
speculative algorithms. However, overheads are so high that trans-
actions are often not used for speculation at an algorithmic level.

Overheads of STMs Two dominant sources of overheads are:
1. Overhead due to logging All accesses to memory need to be
monitored to detect conflicts.
2. Overhead due to rollbacks after a conflict

(a) The inherent cost of rollback There is an inherent cost
of rollback that is incurred, typically due to having to restore the
memory state.

(b) The cost of the lost work The work that was executed in the
aborting transaction until the point of conflict needs to be thrown
away and this leads to decreased parallel efficiency.

In this paper we target the inefficiencies due to 2.(b). One of
the key insights of this paper is that in some applications work
does not need to be thrown away when two transactions conflict but
can rather be merged. In this paper we propose a merge construct
to allow programmers to salvage partially completed work in an
aborting transaction, merging the states of two conflicting transac-
tions. This has the potential to dramatically reduce overheads due
to rollbacks in STM systems thus enabling programmers to write
and develop highly speculative parallel algorithms.

To build on the intuition behind algorithmic speculative paral-
lelization and the merge construct let us consider the Connected
Components Problem.

1.1 Connected Components Problem
The Connected Components Problem is to find all the connected
components in an undirected graph. Each component in the graph
is to be marked with a unique component number. After detecting
each individual component the number of nodes and the nodes from
that component should be printed. Figure 1 shows the pseudocode
for this problem.

1 / / C a l l e d by t h e main f u n c t i o n .
void c o n n e c t e d c o m p o n e n t s () {

3 f o r (i n t i = 0 ; i < nodes . s i z e () ; ++ i) {
g e n e r a t e c o m p o n e n t (i)

5 }
}

7

/ / Use a DFS s t r a t e g y t o mark a l l t h e c o n n e c t e d nodes .
9 void g e n e r a t e c o m p o n e n t (i n t i) {

s t a c k<i n t> n o d e s s t a c k ;
11 s e t<i n t> marked nodes ;

n o d e s s t a c k . push (i) ;
13 whi le (! n o d e s s t a c k . empty ()) {

Node∗ node = nodes [n o d e s s t a c k . pop ()] ;
15 / / Check i f t h e node has a l r e a d y been marked .

i f (node−>component != −1) {
17 c o n t i nu e ;

}
19 / / Mark t h e node w i t h t h e component number .

node−>component = i ;
21 marked nodes . i n s e r t (node−>i d) ;

f o r (each n e i g h b o r o f node) {
23 n o d e s s t a c k . push (n e i g h b o r) ;

}
25 }

p r i n t (” Component number : ” , i , ” s i z e : ” ,
marked nodes . s i z e () , ” nodes : ” , marked nodes) ;

27 }

Figure 1. Pseudocode for connected components problem

The code is fairly straight forward and employs a DFS strategy
to detect each component. This algorithm cannot be parallelized
in the traditional data parallel manner. Each iteration of the loop
is dependent on the previous iteration and the execution is highly
data dependent. This cripples any static parallelization techniques.
There are specialized parallel DFS algorithms [2, 3, 17]. However,
these parallel algorithms are typically complicated and not in the
area of expertise of the programmer.

1.2 Speculatively Parallelizing Graph Algorithms
There is an extremely simple and intuitive method to speculatively
parallelize some graph algorithms using STMs. The basic idea is to
speculatively launch multiple parallel threads in different parts of
the graph, each executing the same code as the sequential version
as software transactions. These threads run normally until they
conflict with another thread. On a conflict the STM system kicks
in and aborts one of the transactions, thus leading to a correct
parallelization.

To elaborate, consider graph applications which traverse the
edges of a graph performing some arbitrary operation on the nodes
(the connected components problem, is one such application). We
can speculatively launch multiple threads at different parts of the
graph (see Figure 2) each executing the same code as the sequential
version. If it turns out that the threads were speculatively launched
on disconnected parts of the graph (see Figure 2(a)), they will not
conflict and this approach leads to a correct parallelized execution.
However, if the speculatively launched threads operate on the same
component they will eventually conflict (and our STM system
performs a rollback on one of them).

This is a very powerful notion, since we have obtained a sort
of data parallelism over an irregular data structure. This type of
data parallelism is much easier for the programmer to reason about
and deal with when compared to specialized parallel algorithms.
As long as a sufficient number of speculative threads operate on
disjoint parts of the graph we can attain a speedup. On the flip side,
each time two threads conflict, the STM aborts one of them and its
work is lost leading to a less efficient solution.

Component 1 Component 2

start_node_2

start_node_1

(a) Threads with non-conflicting start nodes

Component 1 Component 2

start_node_3
start_node 1

(b) Threads with conflicting start nodes

Figure 2. Threads with different start points

This type of speculative parallelization is susceptible to the
typical scalability concerns of STM applications when there are
a large number of conflicts. A measure of scalability is parallel
efficiency, Pe, defined as:

Pe = S/(p ∗ T (p))
Where S represents the wall clock time of a sequential execu-

tion, p is the number of processors and T (p) is the wall clock time
of an execution on p processors. As the number of conflicts in-
crease, there is an increase in overhead due to both the loss of use-
ful work and time spent in servicing these conflicts, consequently
increasing T (p).

Instead of discarding the work performed by the aborting trans-
action if we can merge it with the continuing transaction, we would
get a significant reduction in the overhead due to conflicts, thereby
decreasing T (p) and consequently increasing Pe. This enables the
execution of highly speculative algorithms efficiently without per-
formance loss due to mis-speculation. We believe the merge con-
struct is key in enabling speculative parallelization to achieve per-
formance gains. Algorithms which have potential for speculative
parallelization such as connected components are often used as ker-
nels in a wide variety of areas such as video processing [21], image
retrieval [12], traffic monitoring [5], object recognition in 3D im-
ages [9] and many more. The merge construct can not be applied to
all STM based applications. We discuss the properties of the merge
construct in Section 4.

1.3 Contributions
In this paper, we enable speculative parallelism via the merge
construct in STM systems. Specifically we make the following
contributions:
• We recognize the need for speculative parallelization and the

role merge plays while developing the basic ideas behind it.
• We demonstrate the usefulness of merging in a connected com-

ponents problem and discuss the subtleties involved.
• We propose an API that programmers can use to express the

merge construct in transactional applications.
• We discuss the properties of the merge construct.
• We demonstrate our framework on a connected components

benchmark and a minimum spanning tree benchmark, while report-
ing significant speedups and excellent scalability.

The remainder of this paper is organized as follows, in Section 2
we discuss the merge construct in detail. In Section 3 we discuss the
API. We discuss the properties of the merge construct in Section 4.
In Section 5 we discuss the benchmarks, experimental results and
observations. We discuss related work in Section 6, then conclude
and present future work.

2. Merge Construct
In this section we’ll discuss the merge construct in detail using the
connected components problem introduced in the previous section.
Figure 1 shows the pseudocode for this problem. This problem is
also amenable to the type of speculative parallelization discussed
in the previous section, i.e. speculatively launching threads on dif-
ferent parts of the graph (as transactions) and relying on an STM to
rollback on conflicts. If at least a few of the speculatively launched
threads start in disjoint components we would have obtained some
amount of parallelism. The underlying reason why no parallelism
is obtained when two transactions conflict is because the work per-
formed by the aborting transaction is thrown away. We will now
discuss how to merge the work performed by the aborting transac-
tion into the continuing transaction using the merge construct.

The merge construct consists of user defined MERGE and UP-
DATE functions and a set of APIs exposed by our framework:
MAKE AVAILABLE, SAFE UPDATE POINT and SNAPSHOT
(optional).

MERGE The job of the MERGE function is to take the work
from the aborting transaction and put it into the continuing trans-
action. A preliminary MERGE function for the connected compo-
nents problem is shown in Figure 3 (we will refine this as we go
along). The essence of the MERGE function is extremely simple.
It simply takes the nodes stack and the marked nodes from the
aborting transaction and adds it to the corresponding data structures
in the continuing transaction.

1 merge (t r a n s a c t i o n t1 , t r a n s a c t i o n t 2) {
t 1 . n o d e s s t a c k . add (t 2 . n o d e s s t a c k) ;

3 t 1 . marked nodes . add (t 2 . marked nodes) ;
}

Figure 3. Preliminary pseudocode for the MERGE function.
t1 = continuing transaction, t2 = aborting transaction.

Our framework automatically invokes the user defined MERGE
function once on every conflict. The state of the aborting transac-
tion is guaranteed to still be in tact during the execution of MERGE.
MERGE is executed by the aborting thread before it terminates.
Figure 4 shows the execution schedule of two conflicting transac-
tions: t1 and t2.

node1 node5 node8 node16 node20

node125 node5

CONFLICT

MERGE

T1

T2
ABORT

Figure 4. Transaction Schedule for T1 and T2

As you can imagine, all kinds of weird race conditions can
arise with such a simple implementation. We have to deal with
two main issues. Firstly, we need to ensure that the nodes stack
and marked nodes in the aborting transaction (t2) are consis-
tent when MERGE is executed (subsection: 1. Consistency). Sec-
ondly, MERGE needs to be able to access the nodes stack and

marked nodes in the continuing transaction (t1) in a synchro-
nized manner (subsection: 2. Synchronization).

1. Consistency To tackle the first issue let us define the state, DS,
of the aborting transaction (t2) at any point in its execution. We
define DS as the union of all the data structures from the aborting
transaction used in the MERGE function. In our example:

DS = (nodes stack, marked nodes).
Note, that we are only concerned about the semantic state of

these data structures and not their actual in-memory representation.
For example, let’s say the marked nodes set contains integers 1
and 2. Whether it is stored as (1, 2) or (2, 1) internally is not relevant
to us and they are semantically equivalent. For our purposes, DS
completely represents the state of the aborting transaction with
respect to the merge construct. DS can either be a:

Valid State is defined as a state, in which all the data structures
in DS are currently consistent with each other and are safe to use
in the MERGE function.

Invalid State is defined as a state in which the data structures in
DS are currently inconsistent with each other and are not safe to
use in the MERGE function.

When MERGE is executed, if t2’s DS is in a valid state a
consistent set of data structures are available. However, if DS is
in an invalid state an inconsistent set of data structures will be
available and can not be used by MERGE.

To get a better understanding of what valid states are let us
first see how an invalid (inconsistent) state might arise in MERGE.
Consider again the pseudocode from Figure 1. The only lines in
the pseudocode which can potentially cause an STM conflict (and
hence cause MERGE to be executed) are those with read/write
operations on global memory. In particular, lines 16 and 20 read
the component number of a node from global memory and write to
it. Only at these two lines can a conflict potentially occur. Figure
5(a) shows this snippet again for convenience.

15 / / Check i f t h e node has a l r e a d y been marked .
16 i f (node−>component != −1) {
17 c o n t i nu e ;
18 }
19 / / Mark t h e node w i t h t h e component number .
20 node−>component = i ;
21 marked nodes . i n s e r t (node−>i d) ;
22 f o r (each n e i g h b o r o f node) {
23 n o d e s s t a c k . push (n e i g h b o r) ;
24 }

(a) Original code

15 / / Check i f t h e node has a l r e a d y been marked .
16 i f (node−>component != −1) {
17 c o n t i nu e ;
18 }
19 / / Mark t h e node w i t h t h e component number .
20 marked nodes . i n s e r t (node−>i d) ;
21 node−>component = i ;
22 f o r (each n e i g h b o r o f node) {
23 n o d e s s t a c k . push (n e i g h b o r) ;
24 }

(b) Modified code

Figure 5. Code snippets

Figure 5(b) shows the same code, but with lines 20 and 21
interchanged in position. While this alternate implementation is
still a correct sequential implementation and a correct parallel
STM implementation it can lead to an invalid state while executing
MERGE. Let’s see how. Potential STM conflicts can now occur on
either line 16 or line 21 (Figure 5(b)). Let’s say a conflict occurs on
line 21 while processing nodea. nodea would have already been
added to the marked nodes set, semantically indicating that the

node has already been processed. However, since the conflict oc-
curs on line 21 and its execution ceases at that point, nodea’s neigh-
bors will not be inserted into nodes stack. Once MERGE (Figure
3) executes after the conflict on line 21 it will append the contents
of t2’s data structures into t1’s. t2’s marked nodes indicates that
nodea has been completely processed, while its nodes stack in-
dicates that nodea has not been processed. Now, when the contin-
uing transaction t1 continues executing its code, there is a possi-
bility that all the nodes which are neighbors of nodea get skipped
since they were never added to the traversal stack nodes stack in
the aborting transaction. This is an incorrect execution due to an
invalid state.

While this example is contrived and it is simple to see that
in the natural expression of the transaction the states are in fact
always valid during MERGE, it might be the case that for some
transactional applications it is extremely difficult to write code
such that state (DS) is valid during MERGE execution. For such
situations we provide the programmer with a SNAPSHOT API
(described shortly).

To determine if a given piece of code will result in a valid state
or invalid state during the execution of MERGE the programmer
needs to:

a. Identify conflict points Conflict points are those lines in the
code which read/write to global memory. Depending on the STM
system that is begin used these statements are typically wrapped in
special STM API calls. Hence, this is normally an easy step.

b. Identify the possibility of an Invalid State The programmer
needs to take each of the conflict points identified in the previous
step and check if executing the MERGE function after that conflict
point will lead to an invalid state in MERGE. In our example,
this is straightforward, since all changes to structures in DS are
made after all potential conflict points. No invalid states can arise.
However, it might not be so simple to make this determination for
all applications. To deal with these applications we provide the
programmer with the SNAPSHOT API.

A call to the SNAPSHOT API can be inserted by the program-
mer at any point that the data structures will be consistent in the
main transaction code. This API takes a checkpoint of the current
state of the data structures and ensures that only this state is ac-
cessed in any subsequent invocation of MERGE, thereby alleviat-
ing any concerns of invalid states. It is typically extremely simple
to determine where to make the SNAPSHOT call, normally at the
beginning or end of the loop or function call. For example, in our
example it could be placed as the first line in the loop (see line 8
in Figure 6). Note that the SNAPSHOT call is not required in our
implementation since valid states are guaranteed but is shown here
for completeness.

Now that we have guaranteed that the aborting transaction’s DS
is in a valid state, we shift our focus to the issue of synchronization
with the continuing transaction in MERGE.

2. Synchronization Consider again the execution schedules of
two conflicting transactions, t1 and t2 in Figure 4.

In Figure 4, once t2 encounters a conflict, it will execute
MERGE. MERGE needs access to the private states of both t1
and t2. In the previous section we discussed how we can guarantee
that t2’s data structures (DS) are in a valid state. However, while
MERGE is executing, t1 will be executing simultaneously and its
data structures will be undergoing modifications. To overcome this,
we allow the programmer to provide merge specific data structures
for t1 in the transaction and identify them using our API. Only
these merge specific data structures should be used in the MERGE
code. Our framework guarantees that these merge specific data
structures will only be used in a synchronized manner (i.e. with
appropriate locking).

In our example MERGE code (Figure 3) instead of directly
inserting into t1’s nodes stack and marked nodes set, merge
specific data structures should be used. See lines 34 - 36 in Figure
6 for the final MERGE code.

UPDATE Since MERGE inserts into merge specific data struc-
tures, the continuing transaction t1 needs to incorporate this infor-
mation into its actual data structures. To enable this, the program-
mer provides the second user-defined function: UPDATE. This
function simply takes the information from the merged data struc-
tures and incorporates it into the actual data structures (lines 26 -
32 in Figure 6).

Our framework provides a SAFE UPDATE POINT API which
can be called periodically by the transaction. Our framework
keeps track of when MERGEs are performed and uses these
SAFE UPDATE POINT calls as opportunities to invoke the UP-
DATE function. The UPDATE function is executed by t1 itself.

Let’s recap by looking at the complete, final code sample in
Figure 6.

void g e n e r a t e c o m p o n e n t (i n t component number) {
2 a t om ic {

s t a c k<i n t> n o d e s s t a c k , m e r g e d n o d e s s t a c k ;
4 s e t<i n t> marked nodes , merged marked nodes ;

MAKE AVAILABLE(n o d e s s t a c k , marked nodes ,
m e r g e d n o d e s s t a c k , merged marked nodes ,
component number) ;

6 n o d e s s t a c k . push (i) ;
whi le (! n o d e s s t a c k . empty ()) {

8 SNAPSHOT(n o d e s s t a c k , marked nodes) ; / / OPTIONAL
Node∗ node = nodes [n o d e s s t a c k . pop ()] ;

10 / / Check i f t h e node has a l r e a d y been marked .
i f (node−>component != −1) {

12 c o n t in u e ;
}

14 / / Mark t h e node w i t h t h e component number .
node−>component = component number ;

16 marked nodes . i n s e r t (node−>i d) ;
f o r (each n e i g h b o r o f node) {

18 n o d e s s t a c k . push (n e i g h b o r) ;
}

20 SAFE UPDATE POINT () ;
}

22 p r i n t (” Component number : ” , i , ” s i z e : ” ,
marked nodes . s i z e () , ” nodes : ” , marked nodes) ;

}
24 }

26 UPDATE(t r a n s a c t i o n t) {
t . n o d e s s t a c k . add (t . m e r g e d n o d e s s t a c k) ;

28 t . marked nodes . add (t . merged marked nodes) ;
f o r (node i n t . merged marked nodes) {

30 node . component = t . component number ;
}

32 }

34 MERGE(t r a n s a c t i o n t1 , t r a n s a c t i o n t 2) {
t 1 . m e r g e d n o d e s s t a c k . add (t 2 . n o d e s s t a c k) ;

36 t 1 . merged marked nodes . add (t 2 . marked nodes) ;
}

Figure 6. Complete pseudocode for connected components with
merge

Note that in the UPDATE function, by virtue of marking all the
merged nodes, locks are acquired by the STM system on all of the
newly added nodes. The MAKE AVAILABLE API call allows the
programmer access to any local variables inside the MERGE and
UPDATE functions.

In the context of the connect components problem, while there
is a significant performance improvement due to this kind of spec-
ulative parallelization technique using STMs, there is no perfor-
mance improvement attained due to the merge construct. This is

because the DFS algorithm is as quick as the merge function it-
self. We use this example to motivate our ideas. While the merge
does not provide a performance benefit in this application, it is still
applicable to other applications such as the Minimum Spanning
Tree (MST) problem. This is discussed in more detail in Section
5.1. Similar modifications are made in the MST Problem and we
demonstrate significant speedups due to both the speculative STM
parallelization and the merge construct as well as sustained scala-
bility at higher core counts. The key behind the improvement be-
ing the dramatic reduction in redundant work that needs to be per-
formed due to the merge construct.

2.1 STM Requirements
Our framework requires the STM system to satisfy certain require-
ments. Some modifications need to be made to the underlying STM
as well. Here are the requirements of the STM system:
1. Detect conflicts early The STM system must be capable of
detecting conflicts and rolling back as soon as a conflict is detected.
In a write through system locks are typically acquired during the
write itself and hence conflicts will be detected early. In a write
back system there are two popular locking schemes:

a. Commit Time Locking (CTL) postpones acquisition of the
locks till commit time. Our model cannot use this kind of a locking
scheme since conflicts need to be detected early, not during commit
time. Detecting conflicts at commit time will negate any potential
benefit of preventing the execution of redundant work.

b. Encounter Time Locking (ETL) In write back encounter
time locking, though the writes to memory happen only during
commit time, locks are acquired during the execution of the trans-
action itself, hence allowing conflicts to be detected early.
2. No-retry transactions The STM system must be capable of not
retrying aborted transactions.

Most importantly we need either a write through or a write back
ETL STM system to use our framework. We built our framework
on top of TinySTM [14] and found it was straight-forward to make
any additional changes. Another minor change we had to make is
that TinySTM yields to the conflicting transaction before retrying,
as a performance improvement technique. Since we do not retry
after aborts we removed the option to yield.

3. Framework API
In this section we propose an API to support the merge construct
and briefly discuss the implementation of our prototype. The five
components of the API are summarized in Table 1.

MAKE AVAILABLE This API can be called with an arbitrary
number of arguments and each of the arguments becomes available
for the programmer to use in the MERGE and UPDATE functions.
For example, calling:

MAKE AV AILABLE(value1, value2);
will make value1 and value2 accessible inside the functions as
t1.value1 and t1.value2.

MERGE function is the user defined function which merges in-
formation from the aborting transaction. It provides to the program-
mer the two conflicting transactions t1 and t2 as input.

MERGE(transaction t1, transaction t2);
t1 is the continuing transaction and t2 is the aborting transac-
tion. Variables t1 and t2 provide access to the private members
made accessible through the MAKE AVAILABLE call (example:
t1.value). This function is executed by the aborting thread.

SAFE UPDATE POINT can be called by the programmer to
specify safe update point(s) in the transaction (single or multiple
times). This is a simple function call:

SAFE UPDATE POINT ();

These point(s) mark where in the transaction it is safe to incorporate
the merge specific data structures into the main data structures. Our
framework will call the UPDATE function only when a merge has
actually been performed irrespective of the number of times this
API gets called during execution.

UPDATE function is the user defined function that allows the
programmer to incorporate the results from the merge specific
data structure into the main data structures in a safe, synchronized
manner.

UPDATE(transaction t);
Variables made available through MAKE AVAILABLE are acces-
sible inside the function as members of t (example: t.value). This
function is executed by the continuing thread.

SNAPSHOT This is an optional API. As discussed previously
(Section 2) it might be difficult for some applications to ensure
that the aborting transaction is in a valid state during execution of
the MERGE function. In such cases the programmer can simply
insert a call to the SNAPSHOT API. Our framework will create
a snapshot of the data structures specified as arguments. In all
subsequent MERGE invocations, the snapshot created by the latest
SNAPSHOT call will be used. This API can take an arbitrary
number of arguments as input. For example:

SNAPSHOT (value1, value2);
This will create copies of value1 and value2. All calls to MERGE
will use the latest snapshot values for value1 and value2 instead of
their current values. Creating SNAPSHOTs will indeed increase the
execution time since copies need to be made. However, the overall
improvements we gain due to merging far outweigh this overhead
(see Section 5).

Mutual Exclusion The MERGE and UPDATE functions are syn-
chronized. Our framework uses a set of per transaction locks to en-
sure mutual exclusion and guarantee correctness. When MERGE
is called our framework’s internal locks on both transactions are
automatically acquired (order is based on the transaction id which
prevents deadlocks). When UPDATE is called our framework’s in-
ternal lock on the continuing transaction is automatically acquired.
This ensures that accesses to shared data members are safe.

A transaction is not allowed to abort when another transaction
is MERGE-ing with it. This is ensured by acquiring the internal
lock on the transaction before aborting. Further, if two transactions
encounter conflicts at the same time, the order of lock acquisition
determines order of MERGE-ing.

Our prototype assumes only one type of transaction in the code.
To deal with multiple non-composable transactions we can name
each distinct transaction with a simple type and use that to type the
UPDATE and MERGE functions.

4. Properties
In this section we discuss the properties of the merge construct con-
sidering applications which have been speculatively parallelized
using the technique discussed in Section 1.2. For the merge con-
struct to operate as expected it must be Correct and Efficient.

Correctness The merge construct should be correct. That is to
say that after merge is performed the application must be capable
of continuing to execute normally. The result obtained after per-
forming a merge should be the same as that, that would have been
obtained without a merge. Formally, let the transaction T be oper-
ating on the graph G and its result represented by T (G). Consider
two instances of T : T1 and T2 operating on two disjoint sections of
the graph G1 and G2. G1 and G2 evolve with time, as the transac-
tions execute. If on continued execution of T1 and T2 the disjoint
sections G1 and G2 intersect the MERGE function M is invoked.

API Required Summary
MAKE AVAILABLE Yes Makes arguments available in MERGE and UPDATE functions.
MERGE Yes User defined function called by aborting transaction to merge information.
SAFE UPDATE POINT Yes Indicates point(s) in code where it’s safe to invoke UPDATE.
UPDATE Yes User defined function called by continuing transaction to updates data structures.
SNAPSHOT No Creates copy of arguments for use in MERGE to ensure a valid state.

Table 1. Summary of API

M is invoked with the arguments (T1, T2) where T2 is the aborting
transaction and T1 is the continuing transaction. Let the operation
defined by M be �. To be correct the following property must be
satisfied:

T (G1 ∪ G2) = T1(G1) � T2(G2)
Where = is a semantic equivalence and G1∪G2 is simple union

of the graphs. This guarantees that the execution result after the
merge is the same as that if there had been no merge.

Efficiency In addition to being correct merge must also be ef-
ficient. To obtain a performance improvement over an execution
without merge, � must be more efficient than running T itself. If
T2 is being aborted and it has operated on G2 so far then:

te(T1(G1) � T2(G2)) < te(T (G2))
Where te(x) represents the execution time of x. In other words,

it must be quicker to re-use the discarded work than to re-execute
it in transaction T1.

5. Experimental Evaluation
In this section we demonstrate the benefits of our approach through
the Connected Components benchmark as well as the Minimum
Spanning Tree benchmark.

All experiments were performed on a dual quad-core Intel
Xeon E5540 (2.53GHz) machine running Ubuntu 10.10 using
up to 8 concurrent threads. The benchmarks were compiled us-
ing GCC 4.4.5 (Ubuntu/Linaro 4.4.4-14ubuntu5) with the O3 flag
set. OpenMP was used to parallelize the code. We used TinySTM
1.0.0 to protect the transactions. All results were obtained by av-
eraging the results of 5 executions. TinySTM was configured with
write back ETL (Section 2.1). Our results compare:
• Serial execution without any parallel overheads (No STM over-

head)
• Parallel execution using STMs
• Parallel execution using STMs and merge

Datasets The input datasets for both the benchmarks were ran-
domly generated undirected graphs. We parametrize the graph gen-
eration process using T , N , and X . Each graph is a forest con-
taining T base trees. Each node in a tree has a random number of
neighbors, selected uniformly from [0, N). If 0 is selected, it has
no neighbors and the number of trees in the graph hence increases
by 1. There are a total of X nodes in the graph which are evenly
divided between the number of base trees.

5.1 Minimum Spanning Tree
Given a weighted undirected graph, the minimum spanning tree
algorithm computes a tree from the graph whose weight is less than
or equal to the weight of every other spanning tree for the graph.
More generally, any undirected graph has a minimum spanning
forest which is a union of the disjoint minimum spanning trees.

We use the same technique as described in Section 1.2 to paral-
lelize the Minimum Spanning Tree benchmark. First with STMs to
achieve parallelization over the serial execution and then adding
the merge construct to provide even better performance. In this
benchmark transaction durations are much larger than that of the

connected components benchmark and the merge construct almost
always provides consistent performance improvement.

1 void pr ims (i n t i) {
a tom ic{

3 i n t t r e e n u m b e r = i ;
s e t<P a i r∗> t r e e e d g e s , m e r g e d t r e e e d g e s ;

5 s e t<i n t> marked nodes , merged marked nodes ;
MAKE AVAILABLE(t r e e e d g e s , marked nodes ,

m e r g e d t r e e e d g e s , merged marked nodes ,
t r e e n u m b e r) ;

7 i n t n e x t n o d e = i ;
whi le (t r u e) {

9 SNAPSHOT(t r e e e d g e s , marked nodes) ; / / OPTIONAL
Node∗ node = nodes [n e x t n o d e] ;

11 i f (node−>component != −1) {
re turn ;

13 }
node−>t r e e n u m b e r = t r e e n u m b e r ;

15 marked nodes . i n s e r t (node−>i d) ;
P a i r∗ edge = g e t n e x t e d g e (& marked nodes) ;

17 i f (edge == NULL) {
break ;

19 }
n e x t n o d e = edge−>node2−>i d ;

21 t r e e e d g e s . i n s e r t (edge) ;
SAFE UPDATE POINT () ;

23 }
p r i n t (” Tree number : ” , t r e e n u m b e r , ” s i z e : ” ,

marked nodes . s i z e () , ” nodes : ” , marked nodes) ;
25 }
}

27
UPDATE(t r a n s a c t i o n t) {

29 t . t r e e e d g e s . add (t . m e r g e d t r e e e d g e s) ;
t . marked nodes . add (t . merged marked nodes) ;

31 f o r (node i n t . merged marked nodes) {
node . t r e e n u m b e r = t . t r e e n u m b e r ;

33 }
}

35
MERGE(t r a n s a c t i o n t1 , t r a n s a c t i o n t 2) {

37 t 1 . m e r g e d t r e e e d g e s . add (t 2 . t r e e e d g e s) ;
t 1 . merged marked nodes . add (t 2 . marked nodes) ;

39 }

Figure 7. Pseudocode for Prim’s with merge

The benchmark is implemented using Prim’s algorithm. The
benchmark does not use the fastest MST algorithm available but
uses a simple algorithm that a novice programmer might use. Fig-
ure 7 gives the pseudocode including the complete merge construct.
The get next edge function does a simple linear scan over the
marked nodes set and looks for an adjacent node which has not
yet been marked. We also demonstrate the performance impacts of
the SNAPSHOT feature for this benchmark. The natural expres-
sion of the code as shown in Figure 7 does not need SNAPSHOT to
behave correctly but we use it to study its effects on performance.

The datasets used for the Minimum Spanning Tree benchmark
are (methodology was described at the beginning of Section 5).
• DS1 (6000 nodes): X = 6000, T = 6, N = 6.
• DS2 (9000 nodes): X = 9000, T = 5, N = 6.
• DS3 (12000 nodes): X = 12000, T = 4, N = 8.
• DS4 (16000 nodes): X = 16000, T = 3, N = 8.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

Results from DS1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5 6 7 8
 0

 1000

 2000

 3000

 4000

 5000

 6000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

Results from DS2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

Results from DS3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5 6 7 8
 0

 2000

 4000

 6000

 8000

 10000

 12000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

Results from DS4

STM without Merge
STM with Merge

STM with Merge And Snapshot
Serial

Conflicts

Figure 8. Results of the Minimum Spanning Tree benchmark

DS1 is a smaller dataset with lower contention. DS2 and DS3
are datasets with larger sizes and increasing contention. DS4 is the
largest dataset with the most contention. The results we obtained
are reported in Figure 8.

Observations and Discussion Parallelizing the application us-
ing the simple STM parallelization technique (Section 1.2) pro-
vides good speedups. In all the datasets: DS1, DS2, DS3 and DS4
all scenarios with more than 1 thread run faster than the serial ver-
sion. In the STM implementation (without merge), as we increase
the number of threads, execution time decreases as expected. How-
ever, in the case of DS3 and DS4 with 8 threads there is a slow
down when compared to 4 threads. This is due to higher conflict
overheads with an increased number of threads. In fact, this starkly
depicts one of the main criticisms of STMs, that they do not scale
very well with increasing contention. The merge construct is able
to alleviate this issue completely and demonstrates sustained scala-
bility with an increasing number of threads.

We report the results of two implementations of the MST bench-
mark using merge: one without SNAPSHOT-ing and one with
SNAPSHOT-ing. Recall that for our benchmark the SNAPSHOT
is an optional call. As expected the version without SNAPSHOTs
performs better. This is simply due to lower overhead of not hav-
ing to constantly create safe snapshots. At lower thread counts, the
version without SNAPSHOT consistently performs better than the
simple STM parallelization. And very importantly it also scales ex-
cellently as the number of threads increase. This can be attributed
to the fact that the conflict overhead is reduced significantly as
there is minimal wasted work when a transaction is aborted, as
much of it can be re-used. The version with SNAPSHOT-ing per-

forms slightly worse than the version without SNAPSHOT-ing but
at higher thread counts even this version performs significantly
better than the simple STM parallelization. The speedups are sig-
nificant. For DS1 at 8 threads, the STM parallelization with merge
is more than 50% faster than the simple STM parallelization and
more than 90% faster than the serial version. The parallel efficiency
Pe is surprisingly 1.48 (we will explain the super linear speedup in
the next paragraph). For DS4 at 8 threads, the STM parallelization
with merge is more than 75% faster than the simple STM paral-
lelization and more than 90% faster than the serial version. The
parallel efficiency Pe is 1.33. Again, a super linear speedup when
compared to the linear version. DS2 and DS3 also exhibit very
similar characteristics.

The super linear speedups are due to the fact that the get next edge
function does a simple scan over the marked nodes set, look-
ing for other unmarked nodes. This simple lookup results in a
O(n2) scan over the marked nodes set. On parallelization, the
marked nodes set actually gets divided between the many com-
peting threads. Therefore the algorithm runs much more quickly
due to smaller set sizes. This results in the super linear speedups
that we observe. The super linear speedup does not appear in the
standard STM parallelization (without merge) as this advantage
of splitting the marked nodes set between threads can never be
materialized as there is no functionality to merge them.

5.2 Connected Components
As discussed in Section 2, the speculative parallelization approach
provides performance improvements for this benchmark while the
merge construct does not. This is simply because the merge con-

struct is as expensive as the DFS search itself. However, if in ad-
dition to a simple DFS, if the application needed to perform some
arbitrary processing at each node, then the merge construct would
indeed be beneficial.

We still present our results with the Connected Components
benchmark to demonstrate the properties of the merge construct,
especially with varying transaction durations. To better understand
how the merge construct performs with transactions of varying du-
ration (perhaps due to extra processing which needs to be per-
formed at each node of the graph) we simulate transactions of vary-
ing duration in the benchmark and report these results in Figure 9(a)
and Figure 9(b).

The pseudocode for the Connected Components benchmark is
given in Figure 6.

We used two datasets DS1 and DS2 to generate the graphs. The
exact parameters used to generate DS1 and DS2 are:
• DS1 (80000 nodes): X = 80000, T = 4, N = 8.
• DS2 (500000 nodes): X = 500000, T = 2, N = 6.

Observations and Discussion Figure 9(a) and 9(b) follow the
same pattern. Each shows the execution time of the connected
components application with an increasing amount of transaction
processing time inserted into it. DS1 is a smaller dataset containing
80000 nodes (with lower number of conflicts) while DS2 is bigger
at 500000 nodes (with higher amount of conflicts).

In Figure 9(a)(i) the parallel STM implementation without
merge scales as expected and it runs quicker than the serial im-
plementation when there are more than 2 threads. This demon-
strates that this method of parallelization is effective, yet simple
to achieve. As discussed, the merge construct does not provide
any performance benefits in this case simply because the merge is
as expensive the original DFS. However, if we were to consider
any application which also performed some processing at each
node, performance gains are obtained. Figures 9(a)(ii), 9(a)(iii) and
9(a)(iv) show the performance gains when we introduced process-
ing at each node (in the form of a busy loop) for 10, 20 and 30
microseconds. Even with such small transaction durations, we see
sizable speedups. At 8 threads we get performance gains of 23%,
33% and 37%. The performance gains increase as we increase the
duration of the transaction. The same pattern is observed in Figure
9(b).

We also observe higher performance benefits of using merge
when there are more conflicts. This is expected as this causes a
higher number of aborted transactions and merge removes much of
the penalty of a transaction aborting. Comparing Figure 9(a) and
9(b) we see that with the increased contention of DS2 we get much
better performance gains using merge.

6. Related work
TM systems have been widely recognized as an effective and sim-
ple method of parallelization. The different types of TM systems:
STMs [8, 13–15], HTMs (Hardware TMs) [7, 26, 31] and HyTMs
(Hybrid TMs) [11, 27, 28] provide varying degrees of flexibility,
programmability, scalability and hardware support.

Overhead reduction in STMs is an active area of research. [1]
tries to reduce overheads through static analysis. [19] deals with
conflicts at an abstract data type (ADT) level. [10] tries to decrease
the number of conflicts by predicting data access patterns. We on
the other hand, try to decrease the severity of conflicts. Many other
techniques have been developed (see [25] for a recent list). Our
work is orthogonal to the other work and they can benefit from our
approach as well.

Much work has also gone into creating new parallel algorithms
for problems such as the minimum spanning tree [4, 22], the con-
nected components problem [16, 20] and DFS [17]. However our

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8
 0

 5000

 10000

 15000

 20000

 25000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

(i) With no extra transaction processing

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

(ii) 10 microseconds transaction

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

(iii) 20 microseconds transaction

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7 8
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

(iv) 30 microseconds transaction

STM without Merge
STM with Merge

Serial
Conflicts

(a) Results of the Connected Components benchmark (DS1)

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1 2 3 4 5 6 7 8
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000
Ti

m
e

(m
ill

is
ec

on
ds

)

C
on

fli
ct

s

Threads

(i) With no extra transaction processing

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

(ii) 10 microseconds transaction

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 1 2 3 4 5 6 7 8
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

(iii) 20 microseconds transaction

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

Ti
m

e
(m

ill
is

ec
on

ds
)

C
on

fli
ct

s

Threads

(iv) 30 microseconds transaction

STM without Merge
STM with Merge

Serial
Conflicts

(b) Results of the Connected Components benchmark (DS2)

Figure 9. Results of the Connected Components benchmark

approach maintains its simplicity and generality making it available
to any programmer irrespective of background.

[6] proposes a mechanism to run ”twilight” code at end of a
transaction before it commits/aborts. While this mechanism allows
the programmer to correct errors before committing, it does not pre-
vent the execution of redundant work and re-use of work between
threads which is the main source of speedups in our framework.

[23] discusses a parallel speculative algorithm for Minimum
Spanning Tree (MST); the main focus of the paper is on devel-
oping a parallel algorithm for MST that uses data merging to im-
prove execution. Although the paper attempts to leverage the idea
of merge, it does not concern itself with how to extend transactional
memory to support the merge construct as a generalized abstrac-
tion for supporting and promoting aggressive speculation. More-

over, their implementation of the MST falls short on performance,
even though it’s scalable, they are unable to demonstrate speedups
over a serial implementation. The main contribution of our paper
in contrast is to propose APIs which programmers can use to lever-
age partially completed transactions and merge the results so that
partially completed work is not wasted. We also study the proper-
ties of the merge construct and present a detailed empirical evalu-
ation. One of the biggest impediments to the use of transactional
memory in highly speculative computation is the high overhead of
rollbacks and restarts. Such high overheads dissuade algorithm de-
signers from speculating aggressively. This paper proposes the crit-
ical merge construct to avoid such costly rollbacks and restarts thus
promoting the design of highly speculative algorithms.

Conclusion and future work
We motivated the need for the merge construct and used the con-
nected components problem to explain how it can benefit graph
applications that are speculatively parallelized. We address the
biggest weaknesses of these types of applications: discarded work
and poor scalability. We took an in-depth look at the performance
implications using the connected components benchmark and
demonstrate very significant speedups in the minimum spanning
tree benchmark with sustained scalability. We believe the merge
construct provides a simple yet effective mechanism to improve
the performance of some parallel applications which use STMs.

We plan to explore more applications of our construct and
extensions of the API. We are also looking at ways to minimize
programmer effort by removing the necessity of one of the user
defined functions. In particular, if we could allow both transactions
to merge only at SAFE UPDATE POINTS we can remove the
requirement for one of the functions.

Acknowledgment
The authors would like to thank the anonymous reviewers for their
comments. The authors also gratefully acknowledge the support of
NSF grants CCF-1018544 and CCF-0916962.

References
[1] Yehuda Afek, Guy Korland, and Arie Zilberstein. Lowering stm

overhead with static analysis. In Proceedings of the 23rd interna-
tional conference on Languages and compilers for parallel computing,
LCPC’10, pages 31–45, Berlin, Heidelberg, 2011. Springer-Verlag.

[2] A. Aggarwal and R. Anderson. A random nc algorithm for depth
first search. In Proceedings of the nineteenth annual ACM symposium
on Theory of computing, STOC ’87, pages 325–334, New York, NY,
USA, 1987. ACM.

[3] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first
search in general directed graphs. In Proceedings of the twenty-first
annual ACM symposium on Theory of computing, STOC ’89, pages
297–308, New York, NY, USA, 1989. ACM.

[4] D.A. Bader and G. Cong. Fast shared-memory algorithms for com-
puting the minimum spanning forest of sparse graphs. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional, page 39, april 2004.

[5] Alessandro Bevilacqua, Alessandro Lanza, Giorgio Baccarani, and
Riccardo Rovatti. A single-scan algorithm for connected components
labelling in a traffic monitoring application. In Proceedings of the 13th
Scandinavian conference on Image analysis, SCIA’03, pages 677–
684, Berlin, Heidelberg, 2003. Springer-Verlag.

[6] Annette Bieniusa, Arie Middelkoop, and Peter Thiemann. Brief an-
nouncement: actions in the twilight - concurrent irrevocable trans-
actions and inconsistency repair. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing,
PODC ’10, pages 71–72, New York, NY, USA, 2010. ACM.

[7] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and
David A. Wood. Tokentm: Efficient execution of large transactions
with hardware transactional memory. In Proceedings of the 35th
Annual International Symposium on Computer Architecture, ISCA
’08, pages 127–138, Washington, DC, USA, 2008. IEEE Computer
Society.

[8] Evgueni Brevnov, Yuri Dolgov, Boris Kuznetsov, Dmitry Yershov, Vy-
acheslav Shakin, Dong-Yuan Chen, Vijay Menon, and Suresh Srinivas.
Practical experiences with java software transactional memory. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, PPoPP ’08, pages 287–288, New
York, NY, USA, 2008. ACM.

[9] Juan F. Carrillo, Maciej Orkisz, and Marcela Hernández Hoyos. Ex-
traction of 3d vascular tree skeletons based on the analysis of con-
nected components evolution. In Proceedings of the 11th international
conference on Computer Analysis of Images and Patterns, CAIP’05,
pages 604–611, Berlin, Heidelberg, 2005. Springer-Verlag.

[10] Romain Cledat, Kaushik Ravichandran, and Santosh Pande. Leverag-
ing data-structure semantics for efficient algorithmic parallelism. In
Proceedings of the 8th ACM International Conference on Comput-
ing Frontiers, CF ’11, pages 28:1–28:10, New York, NY, USA, 2011.
ACM.

[11] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco,
Mark Moir, and Daniel Nussbaum. Hybrid transactional memory.
In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, ASPLOS-
XII, pages 336–346, New York, NY, USA, 2006. ACM.

[12] S. M. Renuka Devi and Chakravarthy Bhagvati. Connected component
in feature space to capture high level semantics in cbir. In Proceedings
of the Fourth Annual ACM Bangalore Conference, COMPUTE ’11,
pages 5:1–5:6, New York, NY, USA, 2011. ACM.

[13] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii.
Distributed Computing, 4167:194–208, 2006.

[14] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic per-
formance tuning of word-based software transactional memory. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 237–246, New
York, NY, USA, 2008. ACM.

[15] Sérgio Miguel Fernandes and João Cachopo. Lock-free and scalable
multi-version software transactional memory. In Proceedings of the
16th ACM symposium on Principles and practice of parallel program-
ming, PPoPP ’11, pages 179–188, New York, NY, USA, 2011. ACM.

[16] Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. On identifying
strongly connected components in parallel. In Proceedings of the
15 IPDPS 2000 Workshops on Parallel and Distributed Processing,
IPDPS ’00, pages 505–511, London, UK, UK, 2000. Springer-Verlag.

[17] Jon Freeman. Parallel algorithms for depth-first search. Technical
Report (CIS) MS-CIS-91-71, University of Pennsylvania, University
of Pennsylvania, Philadelphia, PA 19104-6389, October 1991.

[18] Justin E. Gottschlich and Daniel A. Connors. DracoSTM: A practical
C++ approach to software transactional memroy. In Proceedings of the
2007 ACM SIGPLAN Symposium on Library-Centric Software Design
(LCSD). In conjunction with OOPSLA. Oct 2007.

[19] Maurice Herlihy and Eric Koskinen. Transactional boosting: a
methodology for highly-concurrent transactional objects. In Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, PPoPP ’08, pages 207–216, New York, NY,
USA, 2008. ACM.

[20] D.S. Hirschberg. A parallel graph algorithm for finding connected
components. Technical Report TR7518, Rice University, ECE, Octo-
ber 1975.

[21] U. L. Jau and C. S. Teh. Real-time object-based video segmentation
using colour segmentation and connected component labeling. In
Proceedings of the 1st International Visual Informatics Conference on
Visual Informatics: Bridging Research and Practice, IVIC ’09, pages
110–121, Berlin, Heidelberg, 2009. Springer-Verlag.

[22] Donald B. Johnson and Panagiotis Metaxas. A parallel algorithm for
computing minimum spanning trees. In Proceedings of the fourth

annual ACM symposium on Parallel algorithms and architectures,
SPAA ’92, pages 363–372, New York, NY, USA, 1992. ACM.

[23] Seunghwa Kang and David A. Bader. An efficient transactional
memory algorithm for computing minimum spanning forest of sparse
graphs. In Proceedings of the 14th ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP ’09, pages
15–24, New York, NY, USA, 2009. ACM.

[24] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. Optimistic parallelism
requires abstractions. In PLDI ’07, pages 211–222, 2007.

[25] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan and
Claypool, 2006.

[26] Marc Lupon, Grigorios Magklis, and Antonio Gonzalez. A dynami-
cally adaptable hardware transactional memory. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’43, pages 27–38, Washington, DC, USA, 2010.
IEEE Computer Society.

[27] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDon-
ald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle
Olukotun. An effective hybrid transactional memory system with
strong isolation guarantees. In Proceedings of the 34th annual interna-
tional symposium on Computer architecture, ISCA ’07, pages 69–80,
New York, NY, USA, 2007. ACM.

[28] Torvald Riegel, Patrick Marlier, Martin Nowack, Pascal Felber, and
Christof Fetzer. Optimizing hybrid transactional memory: the impor-
tance of nonspeculative operations. In Proceedings of the 23rd ACM
symposium on Parallelism in algorithms and architectures, SPAA ’11,
pages 53–64, New York, NY, USA, 2011. ACM.

[29] Nir Shavit and Dan Touitou. Software transactional memory. In
PODC ’95: Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing, pages 204–213, New York, NY,
USA, 1995. ACM Press.

[30] Jeffrey Vetter Srinivas Sridharan, Bradford L. Chamberlain, Peter
Kogge, and Steve Deitz. A scalable implementation of language-based
software transactional memory for distributed memory systems. Tech-
nical Report Series FTGTR-2011-02, Oak Ridge National Lab, Oak
Ridge, TN: Future Technologies Group, Oak Ridge National Lab, May
2011.

[31] Rubén Titos-Gil, Anurag Negi, Manuel E. Acacio, José M. Garcı́a,
and Per Stenstrom. Zebra: a data-centric, hybrid-policy hardware
transactional memory design. In Proceedings of the international
conference on Supercomputing, ICS ’11, pages 53–62, New York, NY,
USA, 2011. ACM.

