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Abstract
We present ByteSTM, a virtual machine-level Java STM imple-
mentation that is built by extending the Jikes RVM. ByteSTM
implements two STM algorithms, TL2 and RingSTM. We mod-
ify Jikes RVM’s Optimizing compiler to transparently support im-
plicit transactions. Being implemented at the VM-level, it accesses
memory directly and handles memory uniformly, and avoids Java
garbage collection by manually managing memory for transac-
tional metadata. Our experimental studies reveal throughput im-
provement over other non-VM STMs in the range of 7%–66% on
micro-benchmarks and 7%–76% on macro-benchmarks.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming–parallel programming; D.3.3
[Programming Languages]: Language Constructs and Features–
concurrent programming structures; D.3.4 [Programming Lan-
guages]: Processors–run-time environments

General Terms Algorithms, Experimentation, Languages.

Keywords software transactional memory (STM), transactions,
concurrency, atomicity, run-time, virtual machines

1. Introduction
Lock-based synchronization is the most widely used synchroniza-
tion abstraction. Coarse-grained locking is simple to use, but lim-
its concurrency. Fine-grained locking permits greater concurrency,
but has low programmability: programmers must acquire only nec-
essary and sufficient locks to obtain maximum concurrency with-
out compromising safety, and must avoid deadlocks when acquir-
ing multiple locks. Moreover, locks can lead to livelocks, lock-
convoying, and priority inversion. Perhaps, the most significant
limitation of lock-based code is its non-composability [19].

Transactional Memory (TM) is an alternative synchronization
abstraction that promises to alleviate these difficulties. With TM,
code that read/write shared memory objects is organized as memory
transactions, which speculatively execute, while logging changes
made to objects–e.g., using an undo-log or a write-buffer. Two
transactions conflict if they access the same object and one access
is a write. A contention manager resolves the conflict by abort-
ing one and allowing the other to commit, yielding (the illusion of)
atomicity. Aborted transactions are re-started, after rolling-back the
changes–e.g., undoing object changes using the undo-log (eager),
or discarding the write buffer (lazy). In addition to a simple pro-
gramming model (locks are excluded from the programming inter-
face), TM provides good performance [34] and is composable.

TM has been proposed in hardware (HTM [4, 11, 12, 16, 18,
37]), in software (STM [21, 22, 32, 35, 38]), and in combination
(HybridTM [13, 23, 24, 26, 30, 41]). HTM has the lowest overhead,
but transactions are limited in space and time. STM does not have

such limitations, but has higher overhead. HybridTM avoids these
limitations.

Thread A

1 a to mi c {
2 f o r ( i n t i =0 ; i <1000;

i ++)
3 c o u n t e r ++;
4 }

Thread B

1 a to mi c{
2 f o r ( i n t i =0 ; i <1000;

i ++)
3 c o u n t e r ++;
4 }

Figure 1. Example of implicit transaction language support. If
counter is initialized to zero, the final value will be 2000.

Figure 1 shows an example TM code. The example uses the
atomic keyword, which implicitly creates a transaction for the
enclosed code block.

1.1 STM Implementations
Given the hardware-independence of STM, which is a compelling
advantage, we focus on STM. STM implementations can be clas-
sified into three categories: library-based, compiler-based, and vir-
tual machine-based. Library-based STMs add transactional support
without changing the underlying language, and can be further clas-
sified into: those that use explicit transactions [20, 28, 39? ] and
those that use implicit transactions [8, 22, 31]. Explicit transactions
are difficult to use. They support only transactional objects, and
hence cannot work with external libraries. Implicit transactions,
on the other hand, use modern language features (e.g., Java an-
notations) to mark sections of the code as atomic. Instrumentation
is used to add transactional code transparently to the atomic sec-
tions. Some implicit transactions work only with transactional ob-
jects [8, 31], while others work on any object and support external
libraries [22].

Compiler-based STMs (e.g., Intel C++ STM compiler, Atom-
Java [21]) support implicit transactions transparently by adding
new language constructs (e.g., atomic). The compiler then gen-
erates transactional code that calls the underlying STM library.
Compiler-based STMs can optimize the generated code and do
overall program optimization. On the other hand, compilers need
the source code to support external libraries. With managed run-
time languages, compilers alone do not have full control over the
VM. Thus, the generated code will not be optimized and may con-
tradict with some of the VM features like the garbage collector
(GC).

VM-based STMs, which have been less studied, include [1, 10,
17, 40]. In [17], STM is implemented in C inside the JVM to get
benefits of the VM-managed environment. This STM uses an algo-
rithm that does not support the opacity correctness property [15].
This means that inconsistent reads may occur before a transaction
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Implicit transactions " " $ " $ $ " " " " "

All data types " $ $ " $ $ $ " " " "

External libraries " $ $ "2 $ $ $ " $ 3 " "

Unrestricted atomic blocks $ $ " " " " $ " " " "

Direct memory access " 4 $ $ $ $ $ $ " " $ "

Field-based granularity " $ $ $ $ $ $ $ $ $ "

No GC overhead "5 $ $ $ $ $ $ " " $ "

Compiler support $ $ $ " $ $ $ " " " " &$ 6

Strong atomicity $ $ " " $ $ $ $ " $ $

Closed/Open nesting $ " " $ $ $ $ $ " $ $

Conditional variables $ $ $ $ $ $ $ $ " $ $
1 Atomos is a HybridTM but the software part is implemented inside a VM.
2 Only if source code is available.
3 It is a new language, thus no Java code is supported.
4 Using non-standard library.
5 Uses object pooling, which partially solves the problem.
6 ByteSTM can work with or without compiler support.

Table 1. Comparison of Java STM implementations.

is aborted, causing unrecoverable errors in an unmanaged environ-
ment. Thus, the VM-level implementation choice is to prevent such
unrecoverable errors, which are not allowed in a managed environ-
ment. [10] presents a new programming language based on Java,
called Atomos, and a VM to run it. Standard Java synchronization
(i.e., synchronized, wait/notify) is replaced with transactions.
However, transactional support is based on HTM.

Library-based STMs are largely based on the premise that it is
better not to modify the VM or the compiler, to promote flexibility,
backward compatibility with legacy code, and easiness to deploy
and use. However, this premise is increasingly violated as many
require some VM support or are being directly integrated into
the language and thus the VM. Most STM libraries are based on
annotations and instrumentation, which are new features in the Java
language. For example, Deuce STM library [22] is based on a non-
standard proprietary API (i.e., sun.misc.Unsafe), which makes it
incompatible with other JVMs. Moreover, programming languages
routinely add new features in their evolution for a whole host of
reasons. Thus, as STM gains traction, it is natural that it will be
integrated into the language and the VM.

Implementing STM at the VM-level allows many opportunities
for optimization and adding new features. For example, the VM
has direct access to memory. Thus, writing values back to memory
is easier, faster, and can be done without using reflection (which
usually degrades performance). The VM also has full control of
the GC, which means that, the GC’s potentially degrading effect
on STM performance can be controlled or even eliminated by
manually managing the memory needed for transactional support.
Moreover, if TM is supported using HTM (as in [10]), then VM
is the only appropriate level of abstraction (from a performance
standpoint) to exploit that support. Otherwise, if TM is supported
at a higher level, the GC will abort transactions when it interrupts
them, and language synchronization semantics will contradict with
transactional semantics. Also, VM memory systems typically use a

centralized data structure, which increases the number of conflicts,
degrading performance [7].

1.2 Contributions
Motivated by these observations, we design and implement a VM-
level STM: ByteSTM (Section 2). ByteSTM implements two al-
gorithms: TL2 [14] and RingSTM [36]. It writes directly to mem-
ory without using reflection (unlike [20]) or a non-standard library
(unlike [22]). ByteSTM uniformly handles all variable types, us-
ing the address and number of bytes as an abstraction. It eliminates
the GC overhead, by manually allocating and recycling memory
for transactional metadata. ByteSTM uses field-based granularity,
which scales better than object-based or word-based granularity,
and has no false conflicts due to field granularity.1

In ByteSTM, a transaction can surround any block of code, and
is not restricted to methods only. Memory bytecode instructions
(i.e., load/store operations) that are reachable from a transaction are
translated so that the resulting native code executes transactionally.
ByteSTM works with all data types, not just transactional objects,
and thereby supports external libraries. Currently, ByteSTM does
not support closed/open nesting, strong atomicity, or conditional
variables; these are future work.

Table 1 distinguishes ByteSTM from other STM implementa-
tions. Each row describes an STM feature, and each column de-
scribes an STM implementation. The table entries describe the fea-
tures supported by the different STMs.

We conducted experimental studies, comparing ByteSTM with
other Java STMs including Deuce [22], Object Fabric [28], Multi-
verse [39], DSTM2 [20], and JVSTM [8] (Section 3). Our results
reveal that, ByteSTM improves transactional throughput over non-
VM STMs by 13% to 70% on micro-benchmarks, and by 10% to

1 False conflicts may still occur due to other implementation choices, e.g.,
TL2 lock table [14], read/write signatures [36].



60% on macro-benchmarks. The overall average improvement is
30%.

ByteSTM is open-sourced and is publicly available at hydravm.
org/bytestm. We hope this encourages replication of our results
and further research in this problem space.

2. Design and Implementation
ByteSTM is built by modifying Jikes RVM (version 3.1.2) [3] using
the Optimizing compiler. Jikes RVM has two types of compilers:
the Optimizing compiler and the Baseline compiler. The Baseline
compiler simulates the Java stack machine and has no optimization.
The Optimizing compiler does several optimizations (e.g., register
allocation, inlining, loop optimization). Jikes RVM has no inter-
preter, and bytecode must be compiled before execution. Building
the Jikes RVM with production configuration gives performance
comparable to the HotSpot server JIT compiler [29].

In ByteSTM, bytecode instructions can run in two modes: trans-
actional and non-transactional. The visible modifications to the VM
users are very limited: two new instructions are added (xBegin and
xCommit) to the VM bytecode instructions. These two instructions
will need compiler modifications to generate the correct bytecode
when the atomic blocks are translated. Also, the compiler should
handle the new keyword atomic correctly. To eliminate the need
for a modified compiler, a simpler workaround is used, which is
calling the static method stm.STM.xBegin() to begin a transac-
tion, and stm.STM.xCommit() to commit the transaction. These
two methods are defined empty and static in the class STM in stm
package.

ByteSTM is implicitly transactional: the program only speci-
fies the start and the end of the transaction and all memory op-
erations (loads and stores) inside these boundaries are implicitly
transactional. This simplifies the code inside the atomic block and
also eliminates the need for making a transactional version for
each memory load/store instruction, thereby keeping the number of
added instructions minimal. When xBegin is executed, the thread
enters in transactional mode. In this mode, all writes are isolated
and the execution of the instructions is speculative until xCommit
is executed. At that point, the transaction is compared against other
concurrent transactions for a conflict. If there is no conflict, the
transaction is allowed to commit and at this point (only), all the
transaction modifications become visible to the outside world. If
the commit fails, all the transaction modifications are discarded and
the transaction restarts from the beginning2.

We modified the Jikes Optimizing compiler. Each memory load-
/store instruction (getfield, putfield, getstatic, putstatic,
and all array access instructions) is replaced with a call to a cor-
responding method that adds the transactional behavior to it. The
compiler inlines these methods to eliminate the overhead of calling
a method with each memory load/store. The resulting behavior is
that each instruction checks whether the thread is running in trans-
actional mode or non-transactional mode. Thus, instruction execu-
tion continues transactionally or non-transactionally. The technique
is used to translate the new instructions xBegin and xCommit (or
replacing calls to stm.STM.xBegin() and stm.STM.xCommit()
with the correct method calls).

Modern STMs [8, 22, 31] use automatic instrumentation. Java
annotations are used to mark methods as atomic. The instrumenta-
tion engine then handles all code inside atomic methods and mod-
ifies them to run as a transaction. This conversion does not need
the source code and can be done offline or online. Instrumentation
allows, for the first time, using external libraries – i.e., code inside

2 Note that, this is a very simplified and abstract overview. Actual STM
algorithms have more details.

a transaction can call methods from an external library, which may
modify program data [22].

In ByteSTM, any code that is reachable from within a transac-
tion is compiled to native code with transactional support. Class-
es/packages that will be accessed transactionally are input to the
VM by specifying them on the command line. Then, each mem-
ory operation in these classes is translated so that it first checks
if the thread is running in transactional mode. If so, it runs trans-
actionally. Otherwise, it runs regularly (i.e., non-transactionally).
Although doing such a check with every memory load/store oper-
ation increases overhead, our results show significant throughput
improvement over competitor STMs (see Section 3).

Atomic blocks can be used anywhere in the code (either using
the atomic keyword or by calling xBegin and xCommit). It is
not necessary to make a whole method atomic; any block can be
atomic. External libraries can be used inside transactions without
any change.

Memory access is monitored at the field level, and not at the
object level. Field-based granularity scales well and eliminates
false conflicts resulting from two transactions changing different
fields of the same object.

2.1 Metadata
Working at the VM level allows changing the thread header without
modifying the program code. For each thread that executes transac-
tions, metadata added include the read-set, the write-set, and other
STM algorithm-specific metadata. These metadata is added to the
thread header and is used by all transactions executed in the thread.
Since each thread executes one transaction at a time, there is no
need to create new data for each transaction, allowing reuse of the
metadata. Also, accessing a thread’s header is faster than Java’s
ThreadLocal abstraction.

2.2 Memory Model
At the VM-level, the memory address of each field of an object can
be easily obtained. As mentioned before, ByteSTM is not object-
based, it is field-based. The address of each field is used to track
memory reads and writes. A conflict occurs only if two transactions
modified the same field of an object.

In Java, arrays are objects. ByteSTM tracks memory accesses
to arrays at the element level. That way, unnecessary aborts are
eliminated. Moreover, no reflection is needed and data is written
directly to the memory, as a memory address is already available at
each load and store.

An object instance’s field’s absolute address equals the object’s
base address plus the field’s offset. A static object’s field’s absolute
address equals the global static memory space’s address plus the
field’s offset. Finally, an array’s element’s absolute address equals
the array’s address plus the element’s index in the array (multiplied
by the element’s size). Thus, our memory model is simplified as a
base object plus an offset for all cases.

Using absolute addresses limits us to only non-moving GC (i.e.,
a GC which releases unreachable objects without moving reachable
objects, like mark-and-sweep GC). To support moving GC, a field
is represented by its base object and the field’s offset within that
object. When the GC moves an object, only the base object’s
address is changed. All offsets remain the same. ByteSTM’s write-
set is part of the GC root-set. Thus, the GC automatically changes
the saved base objects’ addresses as part of its reference updating
phase.

To simplify how the read-set and the write-set are handled,
we use a unified memory access scheme. At a memory load, the
information needed to track the read includes the base object and
the offset within that object of the read field. At a memory store,
the base object, the field’s offset, the new value, and the size



of the value are the information used to track the write. When
data is written back to memory, the write-set information (base
object, offset, value, and length of the location) is used to store
the committed values correctly. This abstraction also simplifies the
code, as there is now no need to differentiate between different data
types, as they are all handled as a sequence of bytes in the memory.
The result is simplified code that handles all the data types, and
smaller number of branches (no type checking), yielding faster
execution.

2.3 Write-set Representation
We found that using a complex data structure to represent read-sets
and write-sets affects performance. Given the simplified raw mem-
ory abstraction used in ByteSTM, we decided to use simple arrays
of primitive data types. This decision is based on two reasons. First,
array access is very fast and has access locality, resulting in better
cache usage. Second, with primitive data types, there is no need to
allocate a new object for each element in the read/write set. (Re-
call that an array of objects is allocated as an array of references in
Java, and each object needs to be allocated separately. Hence, there
is a large overhead for allocating memory for each array element.)
Even if object pooling is used, the memory will not be contiguous
since each object is allocated independently in the heap.

Using arrays to represent the write-set means that the cost of
searching an n-element write-set is O(n). To obtain the benefits
of arrays and hashing’s speed, open-addressing hashing with linear
probing is used. We used an array of size 2n, which simplifies the
modulus calculation.

We used Java’s System.identityHashCode standard method
and configured Jikes to use the memory address to compute an ob-
ject’s hash code. This method also handles object moving. Then we
add the field’s offset to the returned hash code, and finally remove
the upper bits from the result using bitwise and operation (which
is equivalent to calculating the modulus): address AND mask = ad-
dress MOD arraySize, where mask = arraySize - 1. For example,
if arraySize = 256, then hash(address) = address AND 0xFF. This
hashing function is efficient with addresses, as the collision ratio
is small. When a collision happens, there is always an empty cell
after the required index because of the memory alignment gap (so
linear probing will give good results). This way, we have a fast and
efficient hashing function that adds little overhead to each array ac-
cess, enabling O(1)-time searching and adding operations on large
write-sets.

Iterating over the write-set elements by cycling through the
sparse array elements is not efficient. We solve this by keeping a
contiguous log of all the used indices, and then iterating on the
small contiguous log entries.

Base
Object Value SizeOffset

Objects

An Object Entry Index

Figure 2. ByteSTM’s write-set using open address hashing.

Open addressing has two drawbacks: memory overhead and
rehashing. These can be mitigated by choosing the array size such
that the number of rehashing is reduced, while minimizing memory

usage. Figure 2 shows how ByteSTM’s write-set is represented
using open-addressing.

2.4 Atomic Blocks
ByteSTM supports atomic blocks anywhere in the code, excluding
I/O operations and JNI native calls. When xBegin is executed,
local variables are backed up. If a transaction is aborted, the local
variables are restored and the transaction can restart as if nothing
has changed in the local variables. This technique simplifies the
handling of local variables since there is no need to monitor them.

ByteSTM supports opacity [15]. When an inconsistent read is
detected in a transaction, the transaction is immediately aborted.
Then local variables are restored, and the transaction is restarted
by throwing an exception. The exception is caught just before
the end of the transaction loop so that the loop continues again.
Note that throwing an exception is not expensive if the exception
object is preallocated. Preallocating the exception object eliminates
the overhead of creating the stack trace every time the exception
is thrown. Moreover, it can be optimized to a simple goto if
the exception handler exists in the same method that throws the
exception. This is similar to setjmp/longjmp in C.

2.5 Garbage Collector
One major drawback of building an STM for Java (or any managed
language) is the GC [25]. STM uses metadata to keep track of
transactional reads and writes. This requires allocating memory
for the metadata and then releasing it when not needed. Frequent
memory allocation (and implicit deallocation) forces the GC to run
more frequently to release unused memory, increasing the overhead
on STM operations.

Some STMs have tried to solve this problem by reducing mem-
ory allocation and recycling the allocated memory [22]. For ex-
ample, object pooling is used to reduce the pressure on the mem-
ory system and improve performance in [22], wherein objects are
allocated from, and recycled back to a pool of objects (with the
heap used when the pool is exhausted). However, allocation is still
done through the Java memory system, and the GC will continue to
check if the pooled objects are still referenced.

Since ByteSTM is integrated into the VM, its memory alloca-
tion and recycling is done outside the control of the Java memory
system: memory is directly allocated and recycled. STM’s memory
requirement, in general, has a specific lifetime. When a transaction
starts, it requires a specific amount of metadata, which remain ac-
tive for the transaction’s duration. When the transaction commits,
the metadata is recycled. Thus, manual memory management does
not increase the complexity or overhead of the implementation.
Within Jikes RVM, objects can be allocated manually in the im-
mortal space, which is not monitored by the GC.

The GC causes another problem for ByteSTM, however. ByteSTM
stores intermediate changes in a write buffer. Thus, the program’s
newly allocated objects will not be stored in the program’s variable.
The GC scans only the program’s stack to find objects that are no
longer referenced. Hence, it will not find any reference to the newly
allocated objects and will recycle their memory. When ByteSTM
commits a transaction, it will thus be writing a dangling pointer.
We solve this problem by modifying the behavior of adding an
object to the write-set. Instead of storing the object address in the
write-set entry value, the object is added to another array (i.e., ob-
jects array). The object’s index in the objects array is stored in the
write-set entry value (Figure 2). Specifically, if an object contains
another object (e.g., a field that is a reference), then we cannot save
the field value as a primitive type (e.g., the absolute address) since
the address can be changed by the GC. The field value is therefore
saved as an object in the “objects array” which is available to the
set of roots that the GC scans. The write-set array is another source



of roots. So, the write-set contains the base objects and the “objects
array” contains the object fields within these base objects. This
prevents the GC from reclaiming the objects.

2.6 STM Algorithms
ByteSTM’s modular architecture allows STM algorithms to be eas-
ily “plugged in.” We implemented the TL2 [14] and RingSTM [36]
STM algorithms. Our rationale for selecting these two algorithms is
that, they are the best performing algorithms reported in the litera-
ture. Additionally, they cover different points in the tradeoff space:
TL2 is effective for long transactions, moderate number of reads,
and scales well with large number of writes, while RingSTM is ef-
fective for transactions with high number of reads and small num-
ber of writes.

2.7 Limitations
Currently, ByteSTM does not support running irrevocable opera-
tions (e.g., I/O operations) inside a transaction. One way to sup-
port such operations is to automatically convert a transaction to an
irrevocable one when it performs any irrevocable action. Irrevoca-
ble transactions are guaranteed to commit successfully by execut-
ing them non-concurrently, of course, at the expense of reduced
throughput. (None of the Java STMs in Table 1 support irrevocable
transactions.)

ByteSTM does not support closed/open nesting. But the mech-
anism of storing transaction’s metadata in the thread header can
be easily extended to support linear nesting (i.e., all child transac-
tions run in the same thread of the parent) [27]. For example, the
thread header can hold a tree representing parent/child relationship,
and each node may hold transaction metadata. Each transaction can
then access its metadata and its parent’s metadata directly from the
thread header. For parallel nesting (i.e., each child transaction runs
in its own thread) [2, 5], a global data structure, where a child can
find its parent’s metadata, can be added.

3. Experimental Results
3.1 Test Environment
We conducted our experiments on a 48-core machine, which has
four AMD OpteronTMProcessors (6164 HE), each with 12 cores
running at 1700 MHz, and 16 GB of memory. The machine runs
Ubuntu Linux 10.04 LTS 64-bit. Jikes RVM version 3.1.2 is used to
run all experiments. We used the production configuration, which
includes the Jikes Optimizing compiler and GenImmix GC [6] (i.e.,
a two-generation copying GC), which match ByteSTM configura-
tions.

The competitor STMs include Deuce [22], ObjectFabric [28],
Multiverse [39], and JVSTM [8]. Note that Deuce uses a non-
standard proprietary API (i.e., sun.misc.Unsafe), which is not
fully supported by Jikes RVM. To run Deuce atop Jikes RVM, we
therefore added necessary methods to Jikes RVM’s sun.misc.Unsafe
implementation including getInt, putInt, getByte, putByte,
getDouble, putDouble, etc.

Since some of these competitor STMs use different algorithms
(e.g., Multiverse uses a modified version of TL2; JVSTM uses a
multi-version STM algorithm) or different implementations, a di-
rect comparison between them and ByteSTM has some degree of
unfairness. This is because, such a comparison includes many com-
bined factors – e.g., the TL2 implementation in ByteSTM is sim-
ilar to Deuce’s TL2 implementation, but the write-set and mem-
ory management are different. This makes it difficult, in general,
to conclude that ByteSTM’s (potential) performance gain is exclu-
sively due to implementing STM at the VM-level. Thus, we imple-
mented a non-VM version using TL2 and RingSTM algorithms as
Deuce plug-ins. Comparing between ByteSTM as an STM at the

VM level with such a non-VM implementation reduces the number
of factors in the comparison.

The non-VM implementation was made as close as possible to
the VM one. The same open-addressing hashing write set is used.
A large read-set and write-set are used so that they are sufficient
for the experiment without requiring extra space. These sets are
recycled for the next transactions. This way, only a single mem-
ory allocation is needed and the GC overhead is minimal. We
used Deuce for this non-VM implementation, since it has many
of ByteSTM’s features. For example, it can directly access mem-
ory and uses field-based granularity. Moreover, it achieved the best
performance among all STM competitors (see results later in this
section). We used offline instrumentation to eliminate the online
instrumentation overhead.

Our test applications include both micro-benchmarks and macro-
benchmarks. The micro-benchmarks are data structures including
Linked List, Skip List, Red-black Tree, and Hash set. The macro-
benchmarks include five applications from the STAMP [9] bench-
mark suite3 (Vacation, KMeans, Genome, Labyrinth, and Intruder).
For the micro-benchmarks, we measured the transactional through-
put (i.e., the number of transactions committed per second). Thus,
higher is better. For the STAMP macro-benchmarks, we measured
the core program execution time, which includes transactional ex-
ecution time. Thus, smaller is better.

Each experiment was repeated 10 times, and each time, the VM
was “warmed up” (i.e., we let the VM run the experiment for some
time without logging the results) before taking the measurements.
We show the average for each data point.

3.2 Micro-Benchmarks
We converted the micro-benchmark data structures from using
course-grain locking to use transactions. The transactions contain
all the code that was inside the critical sections in the course-grain
locking version.

Each data structure is a representation of a sorted set of integers
of size 256. The set elements are in the range 0 to 65536. Writes
represent add and remove operations, and they keep the size of the
set approximately constant during the experiment. Different ratios
of writes and reads were used to measure the performance under
different levels of contention. We also varied the number of threads
in exponential steps (i.e., 2, 4, 8, ...), up to 48.

For each benchmark, we conducted experiments with different
read/write ratios: 20% writes, 50% writes, 80% writes, and 100%
writes. For brevity, we only show results for 20% and 80% writes;
results were consistent for the other cases.

3.2.1 Linked List
Linked-list operations are characterized by a high number of reads
(the range is from 70 at low contention to 270 at high contention),
due to traversing the list from the head to the required node, and a
few writes (about 2 only). This results in long transactions. More-
over, we observed that transactions suffer from a high number of
aborts (abort ratio is from 45% to 420%), since each transaction
keeps all visited nodes in its read-set, and any modification to these
nodes by another transaction’s add or remove will abort the trans-
action.

Figure 3 shows the throughput at increasing number of threads.
ByteSTM has two curves representing the RingSTM and TL2 al-
gorithms. ByteSTM/RingSTM achieves the best performance but
did not scale well because of using a centralized data structure.
ByteSTM/TL2 performance degrades as the ratio of writes in-

3 We used Arie Zilberstein’s Java implementation of STAMP, which is part
of the Deuce project’s open source repository.
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Figure 3. Throughput under Linked List.

creases. Deuce’s performance is the best among other STMs. Other
STMs perform similarly, and all of them have very low throughput.

At high contention, TL2’s scalability degrades. ByteSTM/TL2
outperforms non-VM/TL2 by as much as 17% and up to 30%.
ByteSTM/RingSTM outperforms non-VM/ RingSTM in the 15%–
60% range. The gap between TL2 and RingSTM in high contention
is due to the elimination of the read-set and usage of signatures in
RingSTM, given the very small number of writes.

3.2.2 Skip List
Skip List operations are characterized by a medium number of
reads (from 20 to 40), and a small number of writes (from 2 to 8).
This results in medium-length transactions. Moreover, transactions
suffer from a low number of aborts (abort ratio is from 4% to 20%).

Figure 4 shows the results. In all cases, ByteSTM/TL2 achieves
the best scalability. ByteSTM/RingSTM’s scalability is affected by
the higher abort ratio due to Bloom filter’s false positives. Among
other STMs, Deuce/TL2 is the best in performance and scalability.
Other STMs’ performance and scalability are poor.

ByteSTM/TL2 outperforms non-VM/TL2 in the 13–44% range.
ByteSTM/RingSTM outperforms non-VM/RingSTM in the 10–
33% range.

Since Deuce/TL2 achieved the best performance among all
other STMs, for all further experiments, we use Deuce as a fair
competitor against ByteSTM to avoid clutter, along with the non-
VM implementations of TL2 and RingSTM.

3.2.3 Red-Black Tree
Red-Black Tree operations are characterized by a small number of
reads (from 15 to 30), and a small number of writes (from 2 to
9). This results in short transactions. Moreover, transactions suffer
from a low number of aborts (abort ratio is from 4% to 30%).

Figure 5 shows the results. We observe that, in all cases,
ByteSTM/TL2 achieves the best performance. RingSTM’s perfor-
mance begins to degrade with large number of threads, and with
increased number of writes. This is due to the increased false pos-
itive ratio of the Bloom filter that increases the number of aborts.
Deuce/TL2 is the third in performance, but also suffers from per-
formance degradation after 16 threads.

ByteSTM/TL2 outperforms non-VM/TL2 in the 7–12% range.
ByteSTM/RingSTM outperforms non-VM/RingSTM in the 7–14%
range.

3.2.4 Hash Set
Hash Set operations are characterized by a small number of reads
(from 2 to 31), and a medium number of writes (from 7 to 15). This
results in short transactions. Moreover, the transactions suffer from
a high number of aborts (abort ratio is from 63% to 556%) due
to collisions, linked-list chains, and duplicate inserts that update
the memory. The high abort ratio in this benchmark affects all
implementations.

Figure 6 shows the results. ByteSTM/RingSTM achieves the
best performance, followed by ByteSTM/TL2, and then Deuce.
The high ratio of aborts and relatively high number of writes sig-
nificantly affect Deuce’s performance. Deuce does not scale well.

ByteSTM/TL2 outperforms non-VM/TL2 in the 8–37% range.
ByteSTM/RingSTM outperforms non-VM/RingSTM in the 7–26%
range.

3.3 Macro Benchmarks
3.3.1 Vacation
The Vacation benchmark [9] is characterized by medium-length
transactions, medium read-sets, medium write-sets, and long trans-
action times (compared with other STAMP benchmarks). We con-
ducted two experiments: one with low contention, and the other
with high contention.

Figure 7 shows the results. Note that, here, the y-axis repre-
sents the time taken to complete the experiment, and the x-axis
represents the number of threads. We observe that ByteSTM/TL2
has the best performance and scalability under both low and high
contention conditions. ByteSTM/RingSTM suffers from extremely
high number of aborts due to false positives and long transactions,
but it performs better at small number of threads. ByteSTM/TL2
outperforms non-VM/TL2 by an average of 8% in low contention
and 22% in high contention. ByteSTM/RingSTM outperforms non-
VM/RingSTM by an average of 36% in low contention and 108%
in high contention.

3.3.2 KMeans
The KMeans benchmark [9] is characterized by short transaction
lengths, small read-sets, small write-sets, and short transaction
times. We conducted two experiments: one with low contention,
and the other with high contention.

Figure 8 shows the results. We observe that ByteSTM/TL2
scales well in both cases and performs similar. ByteSTM/RingSTM
performs well in low contention and small number of threads.
ByteSTM/TL2 outperforms non-VM/TL2 by an average of 53% in
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2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 4 8 16 32 64

Ti
m

e
(m

s)

Number of threads

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16 32 64

Ti
m

e
(m

s)

Number of threads

ByteSTM/RingSTM
Non-VM/RingSTM

ByteSTM/TL2
Non-VM/TL2
Deuce/TL2

(a) Low Contention (b) High Contention

Figure 7. Execution time under Vacation.
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Figure 8. Execution time under KMeans.

low contention and 76% in high contention. ByteSTM/RingSTM
outperforms non-VM/RingSTM by an average of 27% in low con-
tention and 18% in high contention.

3.3.3 Labyrinth
The Labyrinth benchmark [9] is characterized by long transaction
lengths, large read-sets, large write-sets, long transaction times, and
very high contention.

Figure 9 shows the results. ByteSTM/TL2 achieves the best
performance and scalability after 16 threads. ByteSTM/ RingSTM
suffers from extremely high number of aborts due to false pos-
itives (large number of reads and writes) and long transactions,
and shows no scalability. ByteSTM/TL2 outperforms non-VM/TL2
by an average of 11.5%. ByteSTM/RingSTM outperforms non-
VM/RingSTM by an average of 8%.

3.3.4 Intruder
The Intruder benchmark [9] is characterized by short transaction
lengths, medium read-sets, medium write-sets, medium transaction
times, and high contention.

Figure 10 shows the results. We observe that ByteSTM/TL2
achieves the best performance. ByteSTM/RingSTM suffers from
increased aborts due to false positives and does not scaler after 8
thread. ByteSTM/TL2 outperforms non-VM/TL2 by an average of
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66%. ByteSTM/ RingSTM outperforms non-VM/RingSTM by an
average of 7%.

Results for the Genome benchmark [9] are skipped for brevity;
they are similar to the Vacation benchmark.
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3.4 Summary
ByteSTM improves performance over non-VM implementations
by an overall average of 30%. On micro-benchmarks, ByteSTM
improves by 7% to 66%. On macro-benchmarks, ByteSTM’s im-
provement ranges from 7% to 76%. Moreover, scalability is signif-
icantly better. ByteSTM, in general, is better when the abort ratio
and contention are high.

RingSTM performs well, irrespective of the number of reads.
However, its performance is highly sensitive to false positives when
the number of writes increases. TL2 performs well when the num-
ber of reads is not large. It also performs and scales well when the
number of writes increases.

4. Conclusions
Our work shows that implementing an STM at the VM-level can
yield significant performance benefits. This is because, at the VM-
level, STM overhead is significantly reduced. Additionally, mem-
ory operations are faster, the GC overhead is eliminated, and no
instrumentation is required. Moreover, atomic blocks can be sup-
ported anywhere, and metadata is attached to the thread header.
Since the VM has full control over all transactional and non-
transactional memory operations, features such as strong atom-
icity and irrevocable operations (not currently supported) can be
efficiently supported.

These optimizations are not possible at a library-level. More-
over, a compiler-level STM for managed languages cannot support
these optimizations. Thus, implementing an STM for a managed
language at the VM-level is likely the most performant.

ByteSTM is open-sourced and is freely available at hydravm.
org/bytestm. A modified version of ByteSTM is currently used
in the HydraVM project [33], which is exploring automated con-
currency refactoring in legacy code using TM.
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