
Abort Free SemanticTM by Dependency Aware
Scheduling of Transactional Instructions

(General Track)

Shlomi Dolev
Ben-Gurion University of the Negev

dolev@cs.dgu.ac.il

Panagiota Fatourou
University of Crete & FORTH-ICS

faturu@csd.uoc.gr

Eleftherios Kosmas
University of Crete & FORTH-ICS

ekosmas@csd.uoc.gr

Abstract
We present a TM system that executes transactions without ever
causing any aborts. The system uses a set of t-var lists, one for each
transactional variable. A scheduler undertakes the task of placing
the instructions of each transaction in the appropriate t-var lists
based on which t-variable each of them accesses. A set of worker
threads are responsible to execute these instructions. Because of the
way instructions are inserted in and removed from the lists, by the
way the worker threads work, and by the fact that the scheduler
places all the instructions of a transaction in the appropriate t-
var lists before doing so for the instructions of any subsequent
transaction, it follows that no conflict will ever occur. Parallelism
is fine-grained since it is achieved at the level of transactional
instructions instead of transactions themselves (i.e., the instructions
of a transaction may be executed concurrently).

1. Introduction
In asynchronous shared memory systems, where processes exe-
cute in arbitrary speeds and communication between them occurs
through accessing basic shared primitives (usually provided by the
hardware), having processes executing pieces of code in parallel
is not an easy task due to synchronization conflicts that may oc-
cur among processes that need to concurrently access non-disjoint
sets of shared data. A promising parallel programming paradigm
is the Transactional Memory (TM) approach where pieces of code
that may access data that becomes shared in a concurrent environ-
ment (such pieces of data are called transactional variables or t-
variables) are indicated as transactions. A TM system ensures that
the execution of a transaction T will either succeed, in which case
T commits and all its updates become visible, or it will be unsuc-
cessful, in which case T aborts and its updates are discarded. Each
committed transaction appears as if it has been executed “instanta-
neously” in some point of its execution interval.

When a conflict between two transactions occurs, TM systems
usually abort one of the transactions to ensure consistency; two
transactions conflict if they both access the same t-variable and
one of these accesses is a write. To guarantee progress, all trans-
actions should eventually commit. This property, albeit highly de-

[Copyright notice will appear here once ’preprint’ option is removed.]

sirable, is scarcely ensured by the currently available TM systems;
most of these systems do not even ensure that transactions abort
only when they violate the considered consistency condition (this
property is known as permissiveness [13]). The work performed
by a transaction that aborts is discarded and the transaction is later
restarted; this incurs a performance penalty. So, the nature of TM
is optimistic; if transactions rarely abort then no work is ever dis-
carded. In terms of achieving good performance, the system should
additionally guarantee that parallelism is achieved. So, transactions
should not be executed sequentially and global contention points
should be avoided. TM algorithms that never abort transactions are
invaluable since they additionally support irrevocable transactions.

In this paper, we present SemanticTM, an opaque [9] TM algo-
rithm which achieves (1) the strongest progress guarantee by en-
suring that transactions never abort, and (2) fine-grain parallelism
at the transactional instruction level: in addition to instructions of
different transactions, instructions of the same transaction that do
not depend on each other can be executed concurrently. So, Seman-
ticTM ensures wait-freedom.

SemanticTM employs a list for each t-variable. A scheduler
places the instructions of each transaction in the appropriate lists in
FIFO order. Specifically, an instruction is placed in the list of the t-
variable that it accesses. A set of worker threads “consume” instruc-
tions from the lists, in order, and execute them. The algorithm is
highly fault-tolerant. Even if some worker threads fail by crashing,
all transactions whose instructions have been placed in the lists will
be executed. We remark that for relatively simple transactions that
access a known set of t-variables, and their codes contain read and
write instructions on them, conditionals (i.e. if, else if, and
else), loops (i.e. for, while, etc.), and function calls, the work of
the scheduler can be done at compile time (so the scheduler compo-
nent is worthless in this case). For simplicity of presentation, this is
the case that we focus on in this version of the paper. We briefly dis-
cuss, in Section 3, how to extend SemanticTM to cope with more
complicated transactional codes. A more elaborated discussion, as
well as a correctness proof for SemanticTM, will be provided in
future versions of the paper.

TM algorithms that never abort transactions has been recently
presented in [1, 14]. These algorithms use ideas from [21] where a
TM algorithm supporting one irrevocable transaction at each point
in time is presented. In the algorithms in [1, 14], read-only trans-
actions are wait-free, i.e. each of them is completed successfully
within a finite number of steps; a read-only transaction never writes
a t-variable in contrast to an update transaction that performs
writes on such variables. However, these algorithms restrict par-
allelism by executing all update transactions sequentially using
a global lock. On the contrary, SemanticTM guarantees that no
transaction aborts while exploiting parallelism between both writ-

1 2013/3/3



ers and readers. Moreover, SemanticTM does not use any locks
and therefore update transactions are also executed in a wait-free
way. TM algorithms that support wait-free read-only transactions are
presented in [3, 17]. Update transactions in these algorithms may
abort and they require locks to execute some of the transactional
instructions.

To enhance progress in TM, a lot of research has been per-
formed on designing efficient contention managers and transac-
tional schedulers. A contention manager [11, 19, 20] is a TM com-
ponent aiming at ensuring progress by providing efficient conflict
resolution policies. When two transactions conflict, the contention
manager is employed to decide whether simple techniques, like
back-off, would be sufficient, or which of the transactions should
abort or be paused to allow the other transaction to complete. Se-
manticTM prevents conflicts from occurring thus making the use
of a contention manager unnecessary.

Somewhat closer to the work proposed here, a transactional
scheduler is a more elaborated TM component which places trans-
actions in a set of queues, usually one for each process; a set of
working threads then removes and executes transactions from these
queues. In addition to deciding which transaction to delay or abort
when a conflict occurs, and when to restart a delayed or aborted
transaction, a scheduler makes also decisions on the scheduling
queue that the transaction will be placed once its execution will
be resumed or restarted. Some of the proposed schedulers always
abort one of the two transactions and place it in an appropriate
queue to guarantee that the transaction will be restarted only af-
ter the conflicting transaction has finished its execution, i.e. they
serialize the execution of the two transactions. CarSTM [7], Adap-
tive Transaction Scheduling [22], and Steal-on-Abort [2] are exam-
ples of such schedulers. Attiya and Milani [4] presented a scheduler
which alternates between reading and writing epochs. In a reading
epoch, priority is given to the execution of read-only transactions
in contrast to what happens in a writing epoch. This technique be-
haves better for read-dominated [12] and bimodal [4] workloads,
for which schedulers like those presented in [2, 7, 22] may se-
rialize more than necessary. However, the working threads in the
algorithm of [4] use locks; additionally, aborts are not avoided. To
evaluate a transactional scheduler, competitive analysis is often em-
ployed [4, 5, 10, 11] where the total time needed to complete a set
of transactions (known as makespan) is compared to the makespan
of a clairvoyant scheduler [15].

In [8], a transactional scheduler has been presented which
schedules transactions based on future prediction of their data sets
on the basis of a short history of past transactions and the accesses
that they perform. If a transaction is predicted to conflict with an
active transaction then it is serialized. To avoid serializing more
than necessary in cases of low contention, a heuristic is used where
prediction and serialization are employed only if the completion
rate of transactions falls below a certain threshold.

In [18], a lock-based dependence-aware transactional memory
system is presented which dynamically detects and resolves con-
flicts. Its implementation extends ideas from TL II [6] with support
of dependence detection and data forwarding. The algorithm seri-
alizes transactions that conflict; in case of aborts, cascading aborts
may occur. The current version of SemanticTM copes only with
transactions that their data sets are known. However, SemanticTM
ensures that all transactions will always commit within a bounded
number of steps, thus providing stronger progress guarantees.

In [16], a database transaction processing system similar to Se-
manticTM is proposed; database transactions can be thought of as
transactions whose data sets are known, in TM concept. Similarly
to SemanticTM, consecutive transactional instructions of a trans-
action are separated into groups, called actions, according to the
dataset (part of the database) they access, each worker thread is re-

sponsible to execute instructions for a disjoint set of datasets, and
each action is scheduled to the appropriate thread. Data dependen-
cies between actions are maintained using extra metadata. Specif-
ically, a shared object (additional to database’s tables), called ren-
dezvous point, is maintained for the dependencies of each action of
some transaction; a single action may have several data dependen-
cies and each of those dependencies will be resolved by the cor-
responding thread. Using these rendezvous points the execution of
a transaction is separated into phases, with each phase containing
independent actions. A thread initiating the execution of a transac-
tion, schedules the independent actions (of the first phase) to the
appropriate worker threads. When a worker thread resolves the last
dependency of some rendezvous point, it initiates the next phase
of transaction’s execution by scheduling the next independent ac-
tions of this transaction. However, due to its execution scheme a
transaction executed in this system may have to abort, whereas in
SemanticTM transactions never abort.

2. SemanticTM
Main Ideas. SemanticTM uses a set of lists, called t-var lists,
one for each t-variable. A thread, called scheduler, places the in-
structions of each transaction in the appropriate t-var lists based on
which t-variables each of them accesses. It also records any depen-
dencies that may exist between the instructions of the same transac-
tion. A set of worker threads reads and executes instructions from
the t-var lists. We use compiler support to know, for each instruc-
tion, any dependency that may lead to or originate from it. The
main structure of SemanticTM is illustrated in Figure 1.

In SemanticTM, all the transactional instructions of each trans-
action T are placed in the t-var lists before the transactional in-
structions of any other transaction. Each of the workers repeatedly
chooses, uniformly at random, a t-var list and executes the trans-
actional instructions of this list, starting from the first that is ready.
Processing transactions in this way ensures that conflicts between
transactions never occur; so, transactions never abort. As an exam-
ple, consider the simple transactions T1 and T2, presented in Fig-
ures 2 and 3, respectively. Obviously, there are conflicts between
these two transactions since they both read and write t-variables x
and y. Without loss of generality, assume that the instructions of
T1 are placed in the t-var lists first. Then, the instructions of lines
1 and 2 of T1 will be placed in the t-var list for x before the write
to x on line 6 of T2. Similarly, the write to y of line 3 of T1 will
be placed in the t-var list for y before the write to y of line 5 of T2.
Since the worker threads respect the order in which instructions
have been inserted in the t-var lists when they execute them, the
instructions of T1 on every t-variable will be executed before the
instructions of T2 on this t-variable, and thus no conflict between
T1 and T2 will occur. This explains why no transaction ever aborts
in SemanticTM.

The set of t-variables accessed by a transaction is called the
transaction’s data set. Notice that an array can either be itself a
t-variable, or each of its elements can be a t-variable. We call con-
trol flow statements the conditionals and loops, and we use the in-
struction cond to refer to such a statement. The term transactional
instructions refers to read, write, and cond instructions. We call
block the body of a control flow statement (i.e. the set of its instruc-
tions); so each cond instruction is associated with a block.

Dependencies. If the execution of a transactional instruction e1
requires the result of the execution of another instruction e2, then
there is a dependency between e1 and e2. This dependency is an
input dependency for e1 and an output dependency for e2. A de-
pendency between a read and a write is called data dependency.
We remark that SemanticTM will place five instructions for T1 in
the t-var lists: e1 which is a write on x (line 1), a read e2 and a

2 2013/3/3



 

execute ready 
transactional 
instructions 

Code of 
Application 

T1: e1, in1, out1, f1 
T1: e2, in2, out2, f2 

 

T2: e3, in3, out3, f3 
 

T3: e4, in4, out4, f4 
T3: e5, in5, out5, f5 

…
Scheduler 

x 

val 

e1, in1, out1, f1 

e5, in5, out5, f5 

z 

val 

e3, in3, out3, f3 

e4, in4, out4, f4 

T1: e1, in1, out1, f1 
T3: e5, in5, out5, f5 

…
T1: e2, in2, out2, f2 

…

T2: e3, in3, out3, f3 
T3: e4, in4, out4, f4 

…

Working Threads 

y 

val 

e2, in2, out2, f2 

Dependence 
Analysis 
Module 

Figure 1. Main components of SemanticTM.

1 x := 3
2 x++
3 y := x

Figure 2. Transaction T1.

4 z := 2
5 y := z
6 x := y

Figure 3. Transaction T2.

7 x := 1

8 if (. . .) then
9 x := 2
10 else
11 x := 4

12 y := x

Figure 4. Transaction T3.

13 x := 1

14 while (x < 10) then
15 z := x
16 x := x ∗ 2
17 y := x

Figure 5. Transaction T4.

write e3 to x (line 2), a read e4 on x and a write e5 to y for
line 3. Notice that there is an output dependency originating from
e1 to e2 and one from e3 to e4. It is remarkable that SemanticTM
does not maintain input dependencies for any read instruction e on
a t-variable x, since all writes to x on which e depends have been
placed in the t-var list of x before e and therefore the read can sim-
ply get the value from the matadata of x (by the way the algorithm
works, this value will be consistent). Thus, SemanticTM records
input dependencies only for write and cond instructions.

A dependency that either leads to or originates from a cond in-
struction is called control dependency. For each cond instruction,
SemanticTM maintains an output control dependency from cond
to each transactional instruction e of the block associated with it.
As an example, there are two output control dependencies for in-

struction 8 (to 9 and 11). We assume that for each write instruction
on a t-variable x, or for each cond instruction e, a function f can be
applied to the values of the input dependencies of e in order either
to calculate the new value of x or to evaluate whether the condition
is true or false, respectively. We remark that f should be applied
after all the input data dependencies of e have been resolved.

A brief description of all possible dependencies for each trans-
actional instruction is provided in Table 1. The state of a transac-
tional instruction is waiting, if at least one of its input dependencies
has not been resolved, otherwise, it is ready; a transactional instruc-
tion is active if it is either waiting or ready.

By using compiler support, the dependencies between the in-
structions of a transaction are known before the beginning of its ex-
ecution. Each instruction, together with its dependencies (and func-
tion), is placed in the appropriate t-var list, as a single entry. For
example, Figure 1 illustrates the extraction of transactional instruc-
tions e1 and e2 from a transaction T1, e3 from some T2, and e4 and
e5 from a transaction T3, with input dependencies in1, . . . , in5,
output dependencies out1, . . . , out5, and functions f1, . . . , f5, re-
spectively. Also, the figure presents their placement into the t-var
lists of x, y, and z.

Conditionals. Each part of a conditional (if, else if, else) is
associated with a cond instruction and a block. Therefore, for an if
. . .then . . .else statement, the two cond instructions (for the if
and the else part) and their blocks’ transactional instructions will
be placed in the appropriate t-var lists. Then, at runtime, one of
the two cond instructions will be evaluated to false so its block’s
instructions will be invalidated by the working thread that executes
this cond. A cond instruction can be inserted in the t-var list of any

3 2013/3/3



Transactional
Instruction

Dependencies
Input Output

Data Dep Control Dep Data Dep Control Dep
e = read(x) In SemanticTM, e has

no input data depen-
dencies

if e participates in some
block, it has an input
control dependency
originating from the
block’s cond

e forwards the value
it reads to write and
cond instructions that
depend on it

if e participates in some
loop’s block, an out-
put control dependency
originates from e to its
block’s cond

e = write(x) e may have input data
dependencies originat-
ing from reads

if e participates in some
block, it has an input
control dependency
originating from the
block’s cond

In SemanticTM, e
has no output data
dependencies

if e participates in some
loop’s block, an out-
put control dependency
originates from e to its
block’s cond

e = cond e may have input data
dependencies originat-
ing from reads

if e is a cond of a
loop cond, it has input
control dependency
originating from each
of its block’s instruc-
tions cond

e has output control
dependencies to each of
its block’s instructions

Table 1. Data dependencies between transactional instructions.

t-variable; in the current version of SemanticTM it is placed in the
t-var list of the first instruction of its block.

Notice that a transactional instruction of some block, may have
outside-block dependencies which come from or lead to instruc-
tions that does not belong to the block. For instance, there may
be outside-block dependencies from the instruction of line 7 to the
cond instructions of the if. . .then . . .else or to the instructions
of the conds’ blocks. Notice that in SemanticTM outside block
dependencies are resolved in a direct way because of the way that
the transactional instructions are placed in the t-var lists. For exam-
ple, to execute line 12, SemanticTM places a read e and a write
e′ in the t-var lists of x and y, respectively. Then later on, when e
is executed, all previous writes to x have been performed, so the
metadata of x contain a consistent value and e can read the value
from there (so e does not have any input dependency). However,
there is a dependency from e to e′.

Loops. Let e be a transactional instruction that is included in a
loop block; let c be the associated cond instruction. SemanticTM
places c and each instruction of the block in the appropriate t-var
lists only once independently of the number of times that the loop
will be executed since this number may be known only at run time.

We remark that the execution of e (and c) in some iteration may
depend on the execution of some transactional instructions of the
previous iteration; we call such a dependency across-iteration. As
an example, consider transaction T4, presented in Figure 5. Notice
that, for iterations other than the first, the cond and the read of
lines 14 and 15, respectively, depend on the value of x calculated
on line 16 during the previous iteration.

In order to perform c multiple times, an iteration counter cntc
is associated with c. This counter stores the current iteration num-
ber of the loop’s execution. Moreover, the input control depen-
dency of e is implemented with a counter cnte; similarly, the input
control dependencies of c are implemented as counters as well. If
cnte = cntc, then the input control dependency of e is resolved,
otherwise not. Notice that cnte can be either equal to or smaller
by one from c’s iteration counter. This is so, since c can initiate a
new iteration only after its input control dependencies originating
from its block instructions have been resolved, i.e. after all these
instructions have been executed for the current iteration; similarly,

these block instructions can be executed only if their input control
dependencies (from c) have been resolved.

To ensure correctness, an iteration number is associated with
each of the input data dependencies of e (or c); this iteration number
is stored together with the corresponding input dependency into a
CAS object. When the iteration number of an input data dependency
inDep of e (or c) is smaller than the iteration counter of c, it
follows that inDep is unresolved for the current iteration; if all
input data dependencies of e have their iteration number fields
equal to the iteration counter of c, then all data dependencies
of e have been resolved. If the input control dependency is also
resolved, then e can be executed. Once e is executed, it resolves the
control dependency to c by writing there an iteration number equal
to the current iteration counter plus one. When all dependencies of
c have been resolved the counter of c increases by one and c can be
executed.

Consider a t-var list that contains two transactional instructions
e1 and e2, in this order, which are included in the same loop block.
Assume that there is an across iteration dependency from e2 to e1.
We remark that the input across-iteration data dependency of e1
originating from e2 should be initialized as resolved in order for
e1 to appropriately become ready for the first iteration of the loop.
Also, notice that the execution of e1 during the second iteration
should occur only after the execution of the first-iteration instance
of e2. Since e1 precedes e2 in the list, the working threads may have
to search which element of the corresponding t-var list is ready (in-
stead of just checking whether the first element of the list is ready).
Specifically, t-var list should be searched until a transactional in-
struction is found that does not participate in the same loop (or
until its end, if such an instruction does not exist). We remark that,
the loop in which a transactional instruction participates can be de-
termined using its output control dependency.

For simplicity, the code of SemanticTM, as presented in Fig-
ures 7 and 8, does not cope with nested conditionals and nested
loops. We briefly discuss how to support these features in Section 3.

Worker threads. Since working threads choose the t-var list to
work on uniformly at random, it may happen that several working
threads may (concurrently) execute the same instruction. To syn-
chronize workers that execute the same instructions, the following
synchronization techniques are employed. For each transactional

4 2013/3/3



instruction e, a status field (with initial value ACTIVE) is main-
tained in its entry, indicating that e has not yet been performed. As
soon as a working thread completes the execution of e, it changes
e’s status to DONE.

In order to atomically update some t-variable x, the value of x is
stored, together with a version number, in a CAS object. Recall that
several instances of a write instruction to some t-variable x which
is contained in a loop block are executed (one for each iteration).
Let e be any such instance. The working threads executing e should
use the same old value for x, so that x is updated consistently;
also, they should calculate the same new value for x for the current
iteration. To ensure this, the old value of x is maintained into e’s
entry as a CAS object which in addition to the value of x stores
an iteration number; moreover, the new value of x, is calculated
by all working threads using the values provided in input data
dependencies of e for the current iteration.

Data Structures. For each t-variable x, SemanticTM stores a
record of type varrec which is denoted by tvarx below. This
record consists of two fields, the value val of x and its version
ver, which is initially 0. SemanticTM maintains an array Tvar of
varrecs with size M , where M is the total number of t-variables.

SemanticTM associates with the ith t-variable xi a t-var list
List[i] which maintains the transactional instructions to be applied
on xi; this list is implemented as a singly-linked list and each of its
elements is of type entry. Specifically, List[i] is a pointer to the
first element of the t-var list of xi.

For each transactional instruction e, SemanticTM stores a
record called entry. The first field of entry, called ins, describes
e and depending on the type (iType) of ins, it contains the follow-
ing fields:

1. In case iType = read:
• outDD, an array that contains information for each output

data dependency of e; more specifically, for each transac-
tional instruction eptr that depends on e, a pointer is main-
tained that points to a record of type varrec, i.e. to the el-
ement of eptr → inDD where e should write its output
value.

2. In case iType = write that is applied on some t-variable x:
• inDD, an array that contains information for each of the in-

put data dependencies of e. Each element of inDD is a CAS
object containing a record of type varrec. The ver field of
each such varrec is initialized with the value 0 with the fol-
lowing exception: when some input data dependency is an
across-iteration dependency the ver field is initialized to 1
(as explained in paragraph Loops above). This initial value
is the same with the initial value of the iteration counter of
the cond instruction of the block that e participates (if any).
• f , a function that can be applied to the values maintained in
inDD, when e becomes ready, in order to calculate the new
value of x.
• oldvrec, a CAS object that contains an oldvaluerec

record. It is used to maintain the old value of x. If e par-
ticipates in a loop block, this value may be different for
each loop iteration.

3. In case iType = cond:
• inDD, an array that contains similar information for each

of the input data dependencies of e as for writes above.
• f , a function that can be applied to the values maintained in
inDD, when e becomes ready, in order to evaluate whether
cond is true or false.

• outCD, an array that contains the output control depen-
dencies of e; specifically, it contains a pointer to the entry
record of each transactional instruction participating in e’s
block.
• inCD, an array that maintains the input control dependen-

cies of e. If e is a loop cond, inCD contains one element
for each transactional instruction included in cond’s loop
block; otherwise, it is not used. Recall that each input con-
trol dependency is implemented as a counter; so each ele-
ment of inCD is a CAS object containing an unsigned inte-
ger which is initialized to 0.

In addition to ins, entry contains also the following fields:

• status, a single bit that describes the status of a transactional
instruction e. It is initially ACTIVE and changes to DONE after
the execution of e has been completed.
• loop, a boolean that is true when e either participates in some

loop’s block or it is a loop’s cond; otherwise, it is false.
• pCond, a pointer which is either null (if e does not participate

in some block), or points to the entry record of the unique
cond instruction from which e has an input control dependency
(otherwise).
• iCond, if e participates to some loop’s block, then it is an index

in the array pCond→ inCD where e should write, in order to
indicate that it has been executed for each specific iteration.
• cnt, a CAS object that contains an unsigned integer with initial

value 0. It is used only if e is a loop cond or if e participates
in some block. Specifically, if e is a loop cond, cnt is used to
determine the current loop iteration. Each time the next iteration
k ≥ 1 is ready to start its execution, it is updated from k − 1
to k. If e participates in some loop, cnt is used to resolve the
input control dependency of e. When cnt = k − 1, k > 1, the
input control dependency of e has been resolved for the (k−1)st
but not for the kth iteration of the loop. Once all loop iterations
have been executed, the status of e will change from ACTIVE to
DONE. Finally, if e participates in some block, but not to some
loop, cnt is used to resolve the input control dependency of e;
so, it changes from 0 to 1, when this block’s cond is evaluated
successfully.
• next, a pointer which is either null, or points to the next entry

record of the t-val list that e resides.

Description of Pseudocode. The pseudocode of SemanticTM is
presented in Figures 7 and 8.
EXECUTEINS. A working thread executes function EXECUTEINS
(Figure 7). EXECUTEINS repeatedly chooses a t-variable x (lines
19 and 20) and executes consecutive ready transactional instruc-
tions contained in it, in order, starting from the first. Recall that, if
some instruction e in x’s t-var list participates in a loop block and
has been performed for the current iteration, other instructions in
later positions of the list may be ready to execute for this iteration
before e becomes ready again. Therefore, EXECUTEINS calls func-
tion CHOOSEINS to find the first ready transactional instruction in
x’s t-var list. If CHOOSEINS returns null, no instruction in this
t-var list is ready to be executed and EXECUTEINS continues by
selecting some other t-var list (line 23). Otherwise, EXECUTEINS
performs the ready instruction using function PERFORMINS (line
24) which is described bellow. When the execution of e is com-
pleted, then the head pointer of x’s t-var list is updated (line 25), so
that it points to the next instruction (if any) after e in this list.

CHOOSEINS, CHECKCD, CHECKDD. CHOOSEINS (lines 27 - 52)
takes as a parameter a pointer to an element el of a t-var list L; the

5 2013/3/3



1 shared Tvar[M ]: varrec
/* metadata for each t-variable */

2 shared Lists[M ]: ptr to entry
/* tvar-list of each t-variable */

3 type varrec
4 val: value
5 ver: unsigned integer

/* used to avoid ABA problems when

updating val or input data dependencies */

6 type oldvaluerec /* stores the old value of a t-variable */

7 oldv: varrec
8 inum: unsigned integer

9 type entry
10 ins: {〈iType : read,

outDD[] : ptr to varrec〉,
〈iType : write,

inDD[] : varrec, f : function, oldvrec : oldvaluerec〉,
〈iType : cond,

inDD[] : varrec, f : function, outCD[] : ptr to entry,
inCD[] : unsigned integer〉} /* if it is a loop’s cond, then inCD is used to ensure that a new iteration starts

after all its block instructions have been executed for the current iteration */

11 status: {ACTIVE, DONE}
12 loop : boolean /* true if ins either participates in some loop block or it is a cond of a loop */

13 pCond : ptr to entry /* if ins participates in some block, it points to the block’s cond */

14 iCond : unsigned integer /* if ins participates in some loop’s block, it is an index in the array of pCond → inCD

where ins should write */

15 cnt: unsigned integer /* if ins is not a loop cond, it implements its input control dependency (if any);

otherwise, it implements the iteration counter of cond */

16 next: ptr to entry

Figure 6. Data structures of SemanticTM.

execution of all elements preceding el in L has been completed.
It returns a pointer (eptr) to the topmost element of L that is
ready (as well as some information about its status and its input
dependencies, as described bellow).

Starting from el, CHOOSEINS tries to find a (ready) transac-
tional instruction with status = ACTIVE. For each transactional
instruction eptr1 that it traverses, it first reads eptr → status
and eptr → cnt (line 31) in local variables status and cnt, re-
spectively, and checks whether eptr has been completed. If this
true, CHOOSEINS continues with the next transactional instruction
in L. Otherwise, CHOOSEINS continues by checking whether eptr
is ready or not (lines 32 to 52).

If some previous instruction (in eptr’s t-var list) contained in
some loop block has already been traversed, then CHOOSEINS
maintains this loop’s cond and current iteration, using local vari-
ables curlcond and curliter (line 27), respectively. If this is the
case (1st condition of line 33) and if eptr either participates in
some other loop (2nd condition of line 33), or it is performed for a
different iteration (i.e., other than curliter) of the loop (3rd condi-
tion of line 33), then CHOOSEINS returns 〈null,⊥,⊥〉, identifying
that no ready instruction has been found. Otherwise, CHOOSEINS
continues as follows.

First the case where eptr is a cond instruction is examined (line
34). If eptr is not a loop’s cond (1st condition of line 35) or it is
executed for the first time (2nd condition of line 35), then it is a
potential instruction to execute. So, the execution of the while loop
of line 29 is terminated and CHOOSEINS continues by checking
whether eptr’s input data dependencies have been resolved or not
(lines 50 to 52). Otherwise, eptr is a loop’s cond and CHOOSEINS
checks whether its control dependencies have been resolved for the
current iteration (line 36) by calling CHECKCD. CHECKCD (lines
54 to 56) returns true if all input control dependencies of eptr
are resolved for the current iteration (i.e., their iteration number
matches the current iteration number which is provided by it cnt
parameter); otherwise, it returns false.

If the control dependencies of eptr are resolved (line 36), then
CHOOSEINS returns eptr, together with cnt and the values of
eptr’s input data dependencies (that is array values). If eptr’s
control dependencies are not resolved (line 39), then it may be that
other ready instructions of its loop block reside in later positions of
L should be executed; so, CHOOSEINS maintains a copy of this

1 Notice that from this point on, we use eptr to refer both to the t-variable’s
name and to the pointer to its entry record.

loop’s cond and its current iteration in curlcond and curliter,
respectively.

Next we examine the case where eptr is not a cond (line 40).
If eptr does not participate in some block (line 41), then it is a
potential instruction to execute so the execution of the while loop
of line 29 is terminated. If eptr participates in some block, but not
to some loop’s block (line 42) and its input control dependency has
been resolved (line 43), then it is a potential instruction to execute
so the execution of the while loop of line 29 is terminated; on the
other hand, if its input control dependency has not been resolved
(line 44), then CHOOSEINS returns 〈null,⊥,⊥〉, identifying that
no ready instruction has been found

If eptr participates in some loop, then this loop’s current iter-
ation is read (line 45). If either the cond of eptr’s loop has not
been executed for the first time (1st condition of the if of line 46),
or eptr’s input control dependency is not resolved for the current
iteration (2nd condition of the if of line 46), then CHOOSEINS re-
turns that no ready instruction has been found. Otherwise, we check
if eptr has not been performed for the current iteration of this loop
(line 47). If this is the case, eptr is a potential instruction to exe-
cute so the execution of the while loop of line 29 is terminated.
Otherwise, some other ready instruction of the same loop in later
positions of L should be executed. So, a copy of this loop’s cond
and current iteration are maintained in curlcond and curliter, re-
spectively.

After the termination of the while loop of line 29, CHOOSEINS
checks if eptr is ready by calling CHECKDD (line 50). If the input
data dependencies of eptr have been resolved for the current itera-
tion iter, CHECKDD returns true together with the values of the
input data dependencies of eptr (that is array values); otherwise,
it returns false. In the former case, CHOOSEINS returns eptr, to-
gether with stat and values (line 51), whereas in the latter case, it
returns 〈null,⊥,⊥〉 (line 52).

CHECKDD (lines 58 - 61) takes as a parameter a pointer eptr
to some transactional instruction’s entry record and an iteration
number iter. If eptr is a read instruction, then true is returned
(line 58). Otherwise, CHECKDD (lines 58 to 60) checks whether
the iteration number of each input data dependency of eptr matches
iter (line 59). If this is true, CHECKDD returns true; otherwise,
it returns false.

PERFORMINS, UPDATETVAR, RESOLVEDD, and RESOLVECD.
PERFORMINS (lines 63 - 77) takes as parameters a pointer eptr
to the entry record of some transactional instruction, an unsigned
integer cnt that is the current iteration in which eptr is executed,

6 2013/3/3



17 EXECUTEINS() by working thread p:
18 while (true) do /* as long as there is work in the system */

19 i := randomly choose an integer from 1 to M /* choose a t-variable */

20 ptvar := &Tvar[i] /* maintain pointer ptvar to the varrec record of this t-variable */

21 while (true) do /* repeatedly try to find ready transactional instructions from the chosen list */

22 〈eptr, cnt, values〉:= CHOOSEINS(List[i]) /* choose a ready instruction eptr from pstart’s t-var list */

23 if (eptr = null) then break /* if no such instruction exists, then skip this t-var list */

24 PERFORMINS(eptr, cnt, ptvar, values) /* perform the chosen instruction */

25 if (eptr → status = DONE) then List[i] := eptr → next /* if eptr completed, then update t-var list */

26 〈ptr to entry, unsigned integer, values[] : value〉 CHOOSEINS(pstart : ptr to entry) by working thread p:
27 〈curlcond, curliter〉 := 〈null,⊥〉 /* initialize the pointer to current loop’s cond entry (if any) and its current iteration */

28 eptr := pstart
29 while (true) /* as long as completed or performed for the current iteration instructions are reached */

30 if (eptr = null) then return 〈null,⊥,⊥〉 /* if the end of eptr’s t-var list has been reached, return that no ready transactional instruction has been found */

31 〈status, cnt〉 := 〈eptr → status, eptr → cnt〉 /* read the current values of eptr’s status and cnt fields */

32 if (status 6= DONE) then /* if eptr has not been performed yet */

/* if some previous instruction (in eptr’s t-var list) contained in a loop block has already been traversed, and if eptr either participates in

some different loop or it has been performed for a different iteration of this loop, then return that no ready instruction has been found */

33 if (curlcond 6= null AND (curlcond 6= eptr → pCond OR curliter 6= cnt)) then return 〈null,⊥,⊥〉
34 if (eptr → ins.iType = cond) then /* if eptr is a cond */

35 if (eptr → loop = false OR cnt = 0) then break /* if either eptr is not a loop’s cond or this is the first time to reach eptr,

eptr is a potential instruction to execute → terminate while */

36 if (CHECKCD(eptr, cnt) = true) then /* if eptr’s input control dependencies have been resolved */

37 values[1..k] := {eptr → ins.inDD[1].val, . . . , eptr → ins.inDD[k].val} /* read input values, and return */

38 return (eptr, cnt, values)

39 else 〈curlcond, curliter〉 := 〈eptr, cnt〉 /* if eptr’s input control dependencies have not been resolved, other ready instructions of its

loop block in later positions of the t-var list should be executed; so, remember this loop */

40 else /* if eptr is not a cond */

41 if (eptr → pCond = null) then break /* if eptr does not participate in some block, it is a potential instruction to execute → terminate while */

42 if (eptr → loop = false) then /* if eptr participates to some block, but not to some loop’s block */

43 if (eptr → cnt = 1) then break /* if the input control dependecy of eptr has been resovled, it is a potential intruction to execute → terminate while */

44 else return 〈null,⊥,⊥〉 /* otherwise, if the input control dependency of eptr has not been resolved, return that no ready transactional instruction has been found */

45 liter := eptr → pCond→ cnt /* read loop’s current iteration */

/* if either the execution of eptr’s loop has not started yet, or eptr’s input control dependency is not resolved for the current iteration, then return that no ready transactional instruction has been found */

46 if (cnt = 0 OR cnt 6= liter) then return 〈null,⊥,⊥〉
/* the input control dependency of eptr has been resolved. If eptr has not been performed yet, then it is a potential instruction to execute → terminate while */

47 if (eptr → pCond→ inCD[eptr → iCond] = liter − 1) then break
/* if eptr has been performed for the current iteration, other ready instructions of the same loop block in later

positions of the t-var list should be executed; so record information about this loop (if not done already) to remember it */

48 else if (curlcond = null) then 〈curlcond, curliter〉 := 〈eptr → pCond, liter〉
49 eptr := eptr → next /* traverse next instruction */

50 〈bool, values〉 := CHECKDD(eptr, cnt) /* check if input data dependencies of eptr have been resolved */

51 if (bool = true) then return (eptr, cnt, values) /* if yes, return eptr and related info */

52 else return 〈null,⊥,⊥〉 /* if no, return NULL */

53 boolean CHECKCD(eptr : ptr to entry, iter : unsigned integer) by working thread p:
54 for each element el ∈ eptr → ins.inCD do /* eptr is a cond instruction; check whether eptr’s input control dependencieshave been resolved for iteration iter */

55 if (el 6= iter) then return (false) /* if not, return false */

56 return (true) /* otherwise, return true */

57 〈boolean, values[] : value〉 CHECKDD(eptr : ptr to entry, iter : unsigned integer) by working thread p:
58 if (eptr → itype = read) then return 〈true,⊥〉 /* if eptr is a read instruction, then it has no input data dependencies; so, return true */

for each element d ∈ eptr → ins.inDD with index j do /* it is checked whether each of eptr’s input data dependencies is resolved or not, for iteration iter) */

59 if (d.ver 6= iter) then return 〈false,⊥〉 /* if this is not true, false is returned */

60 values[j] := d.val /* if this is true for dependency d, d’s value is maintained into values array */

61 return 〈true, values〉 /* if all the input data dependencuies of eptr are resolved, then their values are returned */

Figure 7. Pseudocode for EXECUTEINS, CHOOSEINS, CHECKCD and CHECKDD of SemanticTM.

7 2013/3/3



62 PERFORMINS(eptr : ptr to entry, cnt : unsigned integer, ptvar : ptr to varrec, values[1..k] : value)
63 if (eptr → ins.iType = cond) then /* if eptr is cond */

64 decision := eptr → ins.f(values) /* evaluate its condition */

65 if (decision = true AND eptr → loop = true) then /* if condition is evaluated to true and eptr is a loop cond */

66 CAS(eptr → cnt, cnt, cnt+ 1) /* eptr’s cnt is increased by one to prepare eptr for the next iteration */

67 RESOLVECD(eptr, cnt, decision) /* resolve eptr’s output control dependencies based on decision for iteration cnt */

68 else /* otherwise, eptr is marked as completed */

69 RESOLVECD(eptr, cnt, decision) /* resolve eptr’s output control dependencies based on decision for iteration cnt */

70 eptr → status := DONE

71 else /* otherwise, eptr is not cond */

72 if (eptr → ins.iType = read) then RESOLVEDD(eptr, cnt, ptvar) /* if eptr is read, resolve its output data dependencies */

73 else /* otherwise eptr is write, so calculate ptvar’s new value and update it */

74 newval := eptr → f(values)
75 UPDATETVAR(ptvar, newval, eptr, cnt)

/* if eptr participates in some loop, resolve its output control dependency */

76 if(eptr → loop = true) then CAS(eptr → pCond→ inCD[eptr → iCond], cnt− 1, cnt)
77 else eptr → status := DONE /* otherwise, mark eptr as completed */

78 UPDATETVAR(ptvar : ptr to varrec, newval : value, eptr : ptr to entry, cnt : unsigned integer) by working thread p:
79 data := *ptvar /* read the current value of the t-variable’s varrec record */

80 CAS(eptr → ins.oldvrec, 〈eptr → ins.oldvrec.oldv, cnt− 1〉, 〈data, cnt〉) /* try to store data into oldvrec field of eptr */

81 〈oldv, inum〉 := eptr → ins.oldvrec /* read oldvrec field of eptr */

82 if (inum 6= cnt) then return /* if instruction has already been performed for iteration stat.cnt, then return */

83 CAS(ptvar, oldv, 〈newval, oldv.ver + 1〉) /* otherwise, store newval into ptvar’s record and increment its version */

84 RESOLVEDD(eptr : ptr to entry, iter : unsigned integer, ptvar : ptr to varrec) by working thread p:
85 val := ptvar → val /* read the value of the ptvar’s val field */

86 for each element d ∈ eptr → ins.outDD do /* for each output data dependency of eptr */

87 curval := d→ val /* read the current value of the val field of this dependency... */

88 CAS(d,〈curval, iter − 1〉,〈val, iter〉) /* ... and update it with the val of ptvar, using this dependency’s current val and iteration iter */

89 RESOLVECD(eptr : ptr to entry, iter : unsigned integer, decision : boolean) by working thread p:
90 if (decision := true) then /* if decision is to continue, then for each output dependency of eptr its cnt is incremented by one */

91 for each element d ∈ eptr → ins.outCD do CAS(d→ cnt, iter, iter + 1)
92 else for each element d ∈ eptr → ins.outCD do d→ status := DONE /* otherwise, each output dependecy of eptr is marked as completed */

Figure 8. Pseudocode for CHOOSEINS, UPDATETVAR, RESOLVEDD, and RESOLVECD of SemanticTM.

a pointer to the varrec record of the t-variable on which eptr is
applied (when eptr → iType ∈ {read, write}), and an array
values containing the values of the input data dependencies of
eptr.

If eptr is a cond, its condition is evaluated (line 64) and the
result is stored in the local variable decision. If decision is true
and eptr is a loop cond, then it is re-initiated for the next loop it-
eration (line 66) and the output control dependencies of eptr are
resolved for the current iteration by calling function RESOLVECD.
If either decision is false or eptr is not a loop’s cond, the out-
put control dependencies of eptr are resolved and eptr is marked
as completed (line 70). We remark that if decision is true, RE-
SOLVECD (lines 90 - 92) increments by one the counter field of
each output control dependency of eptr (line 91); otherwise, each
output dependency of eptr is marked as completed (line 92).

We now discuss the case where eptr is not a cond (line 71).
If the type of eptr is read (line 72), its output data dependencies
are resolved for the current iteration cnt, by calling function RE-
SOLVEDD. RESOLVEDD (lines 85 - 88) starts by reading the cur-
rent data data of ptvar and tries to write it into each of the output
dependencies of eptr, using the old data of this dependency and the
current iteration number.

If the type of eptr is a write on some ptvar (line 73), then
the new value newval of ptvar is calculated using values (line
74) and then ptvar is updated with newval, by calling function
UPDATETVAR (line 75). Specifically, UPDATETVAR (lines 79 -
83) takes as parameters tvar, newval, eptr, and cnt. It starts by
trying to store the current value of x’s varrec together with the

current iteration (cnt) into eptr → ins.oldvrec (line 80). Then, it
checks whether eptr is already performed (line 82); if this is true,
it returns. Otherwise, the varrec record of x is atomically (using
CAS) updated (line 83) using eptr → ins.oldvrec.oldv (as the first
parameter of this CAS) and newv together with the stored version
of tvar (that is eptr → ins.oldvrec.ver) incremented by one (as
the second parameter of this CAS).

Finally, if eptr participates in some loop (line 76) its output
control dependency is resolved; otherwise, its status is updated to
DONE (line 77).

3. Discussion
SemanticTM can easily cope with nested conditionals as follows.
Consider an if instruction e2 which participates in the block of an
outer if instruction e1. The scheduler will add an output control
dependency from e1 to e2 but no such dependency from e1 to the
instructions of the block of e2 and vice versa. This simple technique
is enough to support nested conditionals. For nested loops, a similar
technique can be employed. However, extra fields are required in
the entry record to cope appropriately with the iteration counters of
instructions of inner blocks.

The current version of SemanticTM assumes that each trans-
action accesses a known set of t-variables. This restriction can be
overcome by using wildcards; roughly speaking, a wildcard is an
instruction which accesses a t-variable known only at runtime. As
an example, consider a transaction that accesses an element of an
array but which exactly element becomes known only at run time.

8 2013/3/3



To cope with this (or similar) case(s), SemanticTM can maintain a
t-var list L for the entire array, as well as one list Li, 1 ≤ i ≤ m, for
each of its elements, where m is the size of the array. The sched-
uler places each instruction e that accesses a (possibly unknown)
element of the array in L. When later (at runtime), the specific el-
ement i to be accessed by e becomes known, e is moved in list
Li. A similar strategy may work for supporting dynamic memory
allocation, if we consider the memory heap as an array.

Recall that in the current version of SemanticTM there are
output dependencies from all instructions of a block to its cond
and vice versa. However, the scheduler may choose to add such
dependencies from cond to those instructions that do not depend
on other block instructions, since the rest have to wait for the first
instructions in any case before they are ready to execute. Moreover,
no output control dependencies to a block’s cond from those block
instructions that do not contribute to the evaluation of the cond
are needed. Such optimizations may have positive impact on the
performance of SemanticTM.

Designing a blocking version of SemanticTM will be much
simpler than the version presented here since it will not have to
cope with several threads executing the same instruction to achieve
fault tolerance. Experimental work to compare the performance of
different versions of SemanticTM, as well as that of SemanticTM
with the performance of existing TM algorithms is left for the future.

Acknowledgments
We would like to thank Polyvios Pratikakis for several valuable
discussions. Also, we would like to thank the anonymous reviewers
for their valuable feedback.

This work was supported by the project “IRAKLITOS II - Uni-
versity of Crete” of the Operational Programme for Education and
Lifelong Learning 2007 - 2013 (E.P.E.D.V.M.) of the NSRF (2007
- 2013) which is co-funded by the European Union (European So-
cial Fund) and National Resources. It was also supported by the
European Commission under the 7th Framework Program through
the TransForm (FP7-MC-ITN-238639) project and by the ARIS-
TEIA Action of the Operational Programme Education and Life-
long Learning which is co-funded by the European Social Fund
(ESF) and National Resources, through the GreenVM project. S.
Dolev was partially supported by a Russian Israeli grant from the
Israeli Ministry of Science and Technology and the Russian Foun-
dation for Basic Research, the Rita Altura Trust Chair in Computer
Sciences, the Lynne and William Frankel Center for Computer Sci-
ences, Israel Science Foundation (grant number 428/11), Cabarnit
Cyber Security MAGNET Consortium, Grant from the Institute for
Future Defense Technologies Research named for the Medvedi of
the Technion, MAFAT, EMC and the Israeli Internet Association.

References
[1] Y. Afek, A. Matveev, and N. Shavit. Pessimistic software lock-elision.

In 26th International Symposium on Distributed Computing, DISC’12,
2012.

[2] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham,
and I. Watson. Steal-on-abort: Improving transactional mem-
ory performance through dynamic transaction reordering. In
Proceedings of the 4th International Conference on High Per-
formance Embedded Architectures and Compilers, HiPEAC ’09,
pages 4–18, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
978-3-540-92989-5. doi: 10.1007/978-3-540-92990-1 3. URL
http://dx.doi.org/10.1007/978-3-540-92990-1 3.

[3] H. Attiya and E. Hillel. Single-version stms can be multi-
version permissive. In Proceedings of the 12th interna-
tional conference on Distributed computing and networking,
ICDCN’11, pages 83–94, Berlin, Heidelberg, 2011. Springer-

Verlag. ISBN 3-642-17678-X, 978-3-642-17678-4. URL
http://dl.acm.org/citation.cfm?id=1946143.1946151.

[4] H. Attiya and A. Milani. Transactional scheduling for read-
dominated workloads. In Proceedings of the 13th International
Conference on Principles of Distributed Systems, OPODIS ’09,
pages 3–17, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
978-3-642-10876-1. doi: 10.1007/978-3-642-10877-8 3. URL
http://dx.doi.org/10.1007/978-3-642-10877-8 3.

[5] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transac-
tional contention management as a non-clairvoyant schedul-
ing problem. In Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing, PODC
’06, pages 308–315, New York, NY, USA, 2006. ACM.
ISBN 1-59593-384-0. doi: 10.1145/1146381.1146428. URL
http://doi.acm.org/10.1145/1146381.1146428.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional lock-
ing ii. In Proceedings of the 20th international conference
on Distributed Computing, DISC’06, pages 194–208, Berlin,
Heidelberg, 2006. Springer-Verlag. ISBN 3-540-44624-
9, 978-3-540-44624-8. doi: 10.1007/11864219 14. URL
http://dx.doi.org/10.1007/11864219 14.

[7] S. Dolev, D. Hendler, and A. Suissa. Car-stm: scheduling-
based collision avoidance and resolution for software transac-
tional memory. In Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing, PODC ’08,
pages 125–134, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-989-0. doi: 10.1145/1400751.1400769. URL
http://doi.acm.org/10.1145/1400751.1400769.

[8] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh. Prevent-
ing versus curing: avoiding conflicts in transactional memories. In
Proceedings of the 28th ACM symposium on Principles of distributed
computing, PODC ’09, pages 7–16, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-396-9. doi: 10.1145/1582716.1582725. URL
http://doi.acm.org/10.1145/1582716.1582725.

[9] R. Guerraoui and M. Kapalka. On the correctness of trans-
actional memory. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming,
PPoPP ’08, pages 175–184, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-795-7. doi: 10.1145/1345206.1345233. URL
http://doi.acm.org/10.1145/1345206.1345233.

[10] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust con-
tention management in software transactional memory. In OOP-
SLA ’05 Workshop on Synchronization and Concurrency in Object-
Oriented Lanugages (SCOOL ’05), 2005.

[11] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of
transactional contention managers. In Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed com-
puting, PODC ’05, pages 258–264, New York, NY, USA, 2005.
ACM. ISBN 1-58113-994-2. doi: 10.1145/1073814.1073863. URL
http://doi.acm.org/10.1145/1073814.1073863.

[12] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: a benchmark
for software transactional memory. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
EuroSys ’07, pages 315–324, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-636-3. doi: 10.1145/1272996.1273029. URL
http://doi.acm.org/10.1145/1272996.1273029.

[13] R. Guerraoui, T. A. Henzinger, and V. Singh. Permissive-
ness in transactional memories. In Proceedings of the 22nd
international symposium on Distributed Computing, DISC ’08,
pages 305–319, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-87778-3. doi: 10.1007/978-3-540-87779-0 21. URL
http://dx.doi.org/10.1007/978-3-540-87779-0 21.

[14] A. Matveev and N. Shavit. Towards a fully pessimistic stm model. In
7th ACM SIGPLAN Workshop on Transactional Computing, TRANS-
ACT’12, 2012.

[15] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling.
Theor. Comput. Sci., 130(1):17–47.

9 2013/3/3



[16] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. Proc. VLDB En-
dow., 3(1-2):928–939, Sept. 2010. ISSN 2150-8097. URL
http://dl.acm.org/citation.cfm?id=1920841.1920959.

[17] D. Perelman, R. Fan, and I. Keidar. On maintaining mul-
tiple versions in stm. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed comput-
ing, PODC ’10, pages 16–25, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-888-9. doi: 10.1145/1835698.1835704. URL
http://doi.acm.org/10.1145/1835698.1835704.

[18] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Committing
conflicting transactions in an stm. In Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, PPoPP ’09, pages 163–172, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-397-6. doi: 10.1145/1504176.1504201. URL
http://doi.acm.org/10.1145/1504176.1504201.

[19] W. N. Scherer, III and M. L. Scott. Advanced contention management
for dynamic software transactional memory. In Proceedings of the
twenty-fourth annual ACM symposium on Principles of distributed
computing, PODC ’05, pages 240–248, New York, NY, USA, 2005.
ACM. ISBN 1-58113-994-2. doi: 10.1145/1073814.1073861. URL
http://doi.acm.org/10.1145/1073814.1073861.

[20] W. N. Scherer, III and M. L. Scott. Advanced contention management
for dynamic software transactional memory. In Proceedings of the
twenty-fourth annual ACM symposium on Principles of distributed
computing, PODC ’05, pages 240–248, New York, NY, USA, 2005.
ACM. ISBN 1-58113-994-2. doi: 10.1145/1073814.1073861. URL
http://doi.acm.org/10.1145/1073814.1073861.

[21] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transac-
tions and their applications. In Proceedings of the twentieth an-
nual symposium on Parallelism in algorithms and architectures,
SPAA ’08, pages 285–296, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-973-9. doi: 10.1145/1378533.1378584. URL
http://doi.acm.org/10.1145/1378533.1378584.

[22] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling
for transactional memory systems. In Proceedings of the twenti-
eth annual symposium on Parallelism in algorithms and architec-
tures, SPAA ’08, pages 169–178, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-973-9. doi: 10.1145/1378533.1378564. URL
http://doi.acm.org/10.1145/1378533.1378564.

10 2013/3/3


