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Abstract
The power envelope has become a major issue for the design
of computer systems. One way of reducing energy consump-
tion is to downscale the voltage of microprocessors. How-
ever, this does not come without costs. By decreasing the
voltage, the likelihood of failures increases drastically and
without mechanisms for reliability, the systems would not
operate anymore. For reliability we need (1) error detection
and (2) error recovery mechanisms. We provide in this paper
a first study investigating the combination of different error
detection mechanisms with transactional memory, with the
objective to improve energy efficiency. We notably introduce
an analytical model that allows us to give recommendations
for future work.

1. Introduction
The increasing power and energy consumption of modern
computing devices is perhaps the largest threat to technol-
ogy minimization and associated gains in performance and
productivity. For instance, current scaling trends have led to
multi-core processors at the architectural level, and higher
core counts are expected in the following years. Yet, it will
not be possible to keep all the cores on the whole chip
powered-on at the same time due to power envelope issues,
a problem also known as the dark silicon phenomenon [13].

As the power envelope becomes one of the key design
concerns for computer systems, a dramatic improvement
in the energy efficiency of microprocessors is required in
order to keep the power under control. Since energy con-
sumption grows proportionally to the square of supply volt-
age (i.e., Energy ≈ CL × V 2

dd ), a very effective ap-
proach in reducing the energy consumption is to reduce
the supply voltage (Vdd) close to the transistors’ threshold
(near-threshold execution) or lower than the threshold (sub-
threshold execution). Voltage downscaling can offer sub-
stantial energy savings by trading off performance. To take
advantage of potential power savings, microprocessors have
started to provide high-performance and low-power operat-

ing modes [20]. While the processor runs at a high frequency
by using high Vdd in the high-performance mode, in the low-
power mode the processor reduces Vdd and the frequency.

However, the energy reduction in the low-power mode
comes with a drastic increase in the number of failures [9].
As Vdd decreases, failure rates for yield loss, hard errors,
erratic bits, and soft errors increase.

In order to fully exploit the dynamic energy savings of
voltage downscaling, a potentially attractive idea is to im-
plement reliability solutions that allow a system to operate
below the safe margin of Vdd. In this position paper we in-
vestigate the usefulness of the combination of two key ca-
pabilities: (1) error detection and (2) error recovery. Error
detection is the process of discovering that an error has oc-
curred, while error recovery is the process of restoring the
system’s integrity after the occurrence of an error.

The combination of error detection and recovery for de-
pendable multiprocessor systems is not new, implementa-
tions of embedded systems as well as supercomputers often
rely on checkpointing and rollback that are triggered on er-
ror detection [42].The quality of the error recovery for en-
ergy efficiency is, however, even more critical. A poorly
implemented checkpoint/rollback mechanism might con-
sume more energy than saved by reducing the voltage of the
processor. We are therefore interested in new, lightweight
mechanisms. One of the possible solutions is to use trans-
actional memory (TM), which provides automated check-
pointing/rollback. TM was originally introduced to simplify
the process of parallel programming [18], but is also used
for implementing reliability as shown in [14]. We believe
that TM can simplify the process of energy-efficient reliable
programming in a similar way. Researchers showed that the
use of TM can consume less energy than traditional lock-
based mechanisms, for micro benchmarks [25] and also for
the more sophisticated STAMP benchmarks [16]. Hence, it
is worthwhile to further investigate TM in combination with
different error detection mechanisms for processors working
at low voltage levels.
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In this paper, we survey different existing error detection
mechanisms (Section 2) and TM solutions (Section 3) that
apply for error recovery. In Section 4 we provide an initial
study by an analytical model and show that it is possible
to combine error detection and TM if sufficient hardware
support is provided. We further investigate the edge cases
on voltage reduction while the error recovery still leads to
a reduced energy consumption. Finally we give an outlook
and conclude the paper.

2. Error Detection Schemes
As Vdd decreases, the bit failure rate increases rapidly [6,
24]. The nature of these failures due to voltage level re-
duction are either transient (i.e., soft errors and erratic bits)
or permanent (yield loss and hard errors). Permanent faults
can be detected by online detection schemes applied at boot
time, or at the change of the supply voltage [7]. Transient
failures are dynamic and therefore are not easy to detect.
Moreover, for recovery re-execution is needed. In this work,
we focus on transient failures and consider different detec-
tion and recovery schemes for dealing with such failures.

We review several lightweight detection mechanisms and
discuss their applicability for energy efficient computing.
Typical error detection mechanisms found in the litera-
ture (1) run the code redundantly and compare the out-
puts, i.e., rely on replication, (2) use assertions/invariants,
(3) use encoded processing, (4) use approximate computing,
or (5) monitor the error symptoms.

We further discuss how these error detection mechanisms
can be combined with TM (irrespective of whether TM is
built in software or hardware). A qualitative comparison is
provided at the end of the section.

2.1 Replication
To satisfy the strict reliability requirements of mission-
critical systems, various redundancy-based error detection
solutions have been proposed [31, 36]. Triple modular re-
dundancy (TMR) schemes execute the instruction stream
three times, expecting a single result. A voting circuit de-
cides, upon result divergence, which replica is correct, thus
no error recovery is needed. Dual modular redundancy
(DMR) schemes execute an instruction stream redundantly
in two synchronized processors and check if both produce
identical results. If the results diverge, a recovery mecha-
nism can be triggered. The comparison of execution results
causes synchronization and comparison overheads in execu-
tion time. Another issue is the non-determinism introduced
by thread scheduling or user input/output, which makes the
synchronization of the replicas more complex and invasive.

Using TM for dual replicated execution reduces the com-
parison overhead [38, 39]. This is because, instead of com-
paring each individual store, one can efficiently compare the
write-sets (which typically have less entries than the total
number of store instructions because multiple stores to the

same address are mapped to a single entry). Also the com-
parison is done only at the commit stage of the transactions,
which provides implicit checkpoints. The comparison over-
head can be further reduced by comparing hash-based signa-
tures of write-sets and register files of the transactions.

Although replication provides a very high error detection
capability, it suffers from 100% energy and space overhead
in the error-free execution.

2.2 Assertions/Invariants
Assertions are a common technique for detecting software
or hardware errors [3]. Assertions are conditions referring to
the current and previous state of the program. If the states
do not match the expected results, an error is detected. Upon
such event, the typical behavior is to issue a warning, but
corrective actions can also be triggered [27].

An approach based on a coprocessor (watchdog) is pro-
posed in [23]. It uses annotations in the first phase of the er-
ror detection, where processes provide some information. In
the second phase the processes are continuously monitored
and the collected information is compared with the informa-
tion previously provided. The authors claim an error cover-
age of 90% of transient and permanent errors by control-flow
and memory access checking.

As pointed out in [14], combining assertions with trans-
actions is an interesting approach as one can implicitly cre-
ate the latter based on the invariants provided by developers.
Inserting invariants manually into the program has the draw-
back that the resulting assertions might be unsound (lead to
false positives) or incomplete [21] and might be inefficient
because too many evaluations are needed. The alternative is
to add them automatically to a program, as proposed in [12].

The authors of [17] propose an extension of STM Haskell
with invariants that concentrates on C like consistency
from the ACID characteristics. Consistency is ensured by
dynamically-checked invariants that must hold if the sys-
tem is in a consistent state. The authors identified that the
frequency of invariant evaluation represents a tradeoff be-
tween overhead and detection rate. In their work they reduce
the overhead by the following measures. The invariants are
(1) garbage-collected if their watched data structure does
not exist anymore, and (2) invariants are only checked if a
transaction wrote a variable read by the invariant.

2.3 Encoded Processing
Error correcting codes (ECCs) are commonly used to detect
and correct soft errors in memory by adding redundancy.
ECCs usually provide single bit error correction and dou-
ble bit error detection [41]. However, soft errors might also
be introduced during data transport and processing in the
logic building blocks. One way of applying the principles of
ECC to runtime errors is encoded processing [15]. The re-
dundancy is added by applying arithmetic codes to the val-
ues processed by the application. This can be done either
using custom hardware or in software by an encoding com-
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piler [35]. All operations must preserve the encoding, which
results in more computations and higher energy consump-
tion.

The level of error detection that can be achieved using en-
coded processing depends on the selected type of arithmetic
code, e.g., AN codes can detect value errors while ANBD-
mem codes [30] can additionally detect lost updates in mem-
ory, but at the expense of a higher processing overhead [29].
The observed rate of undetected errors is 9% and 0.5%, re-
spectively.

If we combine encoded processing with transactional
memory, a value is validated when it is read or written
by checking its arithmetic code. If the code is incorrect,
the transaction must be aborted. For higher efficiency, the
validation of a code word can be deferred until a transac-
tion commits or the value becomes externally visible (lazy
checking). This avoids the costly check on each access of
the value because the error propagates in the employed arith-
metic code. Eager checks can allow the application to iden-
tify the first occurrence of an invalid value and to react more
proactively.

2.4 Symptom-Based Error Detection
In order to provide reliability at a low cost, some recent
error detection solutions [22, 34] monitor program execu-
tions to inspect if there is a symptom of hardware faults.
These symptoms can be mispredictions in high confidence
branches, high OS activity, or fatal traps (attempting to exe-
cute an undefined instruction code).

Recently, symptom-based error detection mechanisms us-
ing transactions to recover from application crashes have
been proposed in SymptomTM [40] and disclosed in a patent
filed by IBM [5]. The system starts a single special transac-
tion at the beginning of the application. The execution of
the transaction is monitored to detect if there are any symp-
toms of hardware errors, which typically result in fatal traps
(e.g., undefined opcode). Unless any fatal trap exception is
raised in the transaction, the write-set is committed to shared
memory at the end of the transaction. Otherwise, the sys-
tem aborts and re-executes the transaction. Since there is
no replication, the scheme has virtually no area/energy over-
heads. It has, however, limited error coverage since it cannot
detect data corruptions and, further, exceptions can be raised
after the commit of the transaction.

Since some symptoms can be observed very efficiently
(e.g., catching exceptions), symptom-based error detection
can be easily combined with other error detection mecha-
nisms. Other symptoms (e.g., infinite loops due to a corrup-
tion of the stop condition) require an instrumentation of the
code or support by the operating system (e.g, adding time-
outs to operations).

2.5 Approximate Computing
An alternative to encoded processing and redundant execu-
tion is approximate processing. Identifying non-critical in-

Method Memory Processing
Replication high high
Assertions medium high
Encoded Processing medium high
Symptoms low low

Table 1. Memory and Processing Overhead Comparison

structions and executing them using approximate processing
by exploiting narrow values for integer code is becoming
common practice [33]. A further measure is to tolerate er-
rors when they occur in non-critical instructions or in the
non-significant bits when absolute precision is not required
(floating point code). This model can be considered as a
best-effort approach, such as seen in network and storage
systems [4]. The authors claim that some of the guarantees
(like precision) should be shifted from the processing unit to
the application in order to gain performance and scalability,
and to support execution on unreliable hardware. The au-
thors propose to split applications in critical and non-critical
(best-effort) computations.

An error occurring in the computationally non-critical
bits can be safely ignored, thereby reducing the energy over-
head of error detection. The task of identifying the non-
critical parts of the code might be transferred to the pro-
grammer by the use of annotations. The critical computa-
tions should be monitored by a combination of error detec-
tion and recovery. We believe in particular that a combina-
tion of error detection and TM with approximate computing
is worth future investigations.

2.6 Qualitative Comparison
Error detection is a critical step for enabling low voltage op-
eration but it does not come without cost. The energy ef-
ficiency is highly dependent on the selection of the right
technologies. In the following, we summarize the aforemen-
tioned schemes and provide a comparison regarding factors
that influence the design decision. We concentrate on (1) the
overhead introduced in memory and processing, (2) the er-
ror detection coverage, (3) the requirements for setting up
the error detection.
Memory and Processing Overhead. Table 1 compares the
overhead of the single error-detection schemes in processing
and in memory, when applied to an error-free system.

Replication has high memory and processing overheads
because the whole application executes in parallel. With as-
sertions/invariants, the overhead depends on the programmer
or the automated tool that generates them. It can be medium
to high in memory, depending notably on the support for
garbage collection. The annotations have to be evaluated in
any case (even if there are no failures). Encoded processing
needs only a small amount of additional memory to keep
the arithmetic codes, but all executed operations incur the
significant overhead of maintaining the encoding. For the
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symptom-based error detection only the symptoms have to
be stored and checked, therefore the overheads are low.
Error Detection Coverage. There is usually a tradeoff be-
tween error detection coverage and overhead. For exam-
ple, whereas replication provides 100% error detection, it
requires many resources and hence might not be usable
for energy efficient computing when the processor runs in
high performance mode. The assertion-based mechanism is
highly dependent on the implementation. Transient errors
might not be detected, because they are simply not covered.
However, there are implementations that claim to reach 97%
coverage with only 5-14% performance overhead [28]. The
detection capabilities of encoded processing depend on the
applied arithmetic code. Its complexity introduces linearly
increasing runtime costs, while the error detection rate in-
creases exponentially [29]. Symptom-based error detection
provides a limited error coverage with a very-low perfor-
mance overhead.
Requirements for Using the Mechanism. Although the en-
ergy efficiency of a system is the main goal, a mechanism
can only be successful if it can be easily applied, especially
if the error-detection mechanisms have to be combined with
recovery. Replication has few requirements for the check-
ing of the output and the application does not have to be
changed. Assertions usually need language support to be
defined and the implementation must verify them during
the execution. Encoded processing can be implemented as
a combination of compiler and library, and integration with
the application is straightforward.

3. Error Recovery
Error detection is not sufficient by itself to ensure the re-
liability of a system; it needs to be coupled with an error
recovery solution. There are mainly two categories of recov-
ery mechanisms: forward and backward error recovery (FER
and BER). FER is based on replicating the execution in or-
der to use the correct results if the actual execution fails.
This approach assumes that the replicated execution is error-
free and, hence, has limited interest when operating at low
voltages (one example is TMR). BER (also called check-
point/rollback mechanism) stores an error-free state of the
system (checkpoint) and reverts the system state upon error
detection (rollback). BER is classified in three groups ac-
cording to the checkpointing strategy used.
Global Checkpointing [19, 26, 32]. Periodically, all proces-
sors are synchronized to store a global checkpoint. The scal-
ability of this approach is limited as it introduces the sig-
nificant overheads: (1) during barrier synchronization per-
formed at checkpointing some processors might stay idle
if load is not properly balanced between them (e.g., some
processors perform I/O operations before the checkpoint),
(2) the recovery requires all processors to rollback to an ear-
lier validated state, which causes unnecessary rollbacks of
the error-free processors.

Coordinated-local Checkpointing [2, 37]. The overheads
of global checkpointing are mitigated by synchronizing only
the set of processors that have communicated with each
other between two checkpoints to decide on a common
checkpoint, whereas all other processors can perform local
checkpoints. This approach has been shown to outperform
global checkpointing [1].
Uncoordinated-local Checkpointing [10, 11]. In contrast
to the two previous approaches, uncoordinated-local check-
pointing performs checkpointing locally at each processor
without any synchronization and also stores the interac-
tions between processors in order to rollback to a consis-
tent checkpoint. This approach is interesting for executions
where processors communicate rarely.

Checkpointing can also be supported by transactional ap-
proaches. In particular, the use of TM for handling transient
faults has been been proposed in Yalcin et al. [38]. We dis-
cuss next how TM can be used to implement error recovery.

3.1 Adapting TM for Recovery
Although TM (and especially STM) is known to have a
high overhead for certain workloads, a significant portion of
this overhead is due to data synchronization when detecting
whether different threads accessed common data. For error
recovery purposes, however, only the checkpoint/rollback
behavior is necessary and the synchronization requirement
is therefore largely reduced. Hence, it is possible to design
cost-effective TM for error recovery by providing minimal
synchronization (e.g., [38]). Such TM designs can easily
provide coordinated-local checkpointing.

The cost of providing checkpoint/rollback behavior de-
pends mainly on the logging strategy. Redo-logging (lazy
data versioning) performs speculative modifications on pri-
vate copies and makes the modifications effective on shared
memory only at transaction commit. Since the modifications
within transactions are repeated—at least once for the pri-
vate copy and once for the shared memory—a significant
overhead is introduced even to error-free executions. Undo-
logging (eager data versioning) performs in-place memory
updates during transaction execution and introduces over-
head only upon abort, i.e., upon error recovery. The abort
overhead is caused by the replacement of modified versions
of data with their versions prior to the transaction. As such,
undo-logging is preferable in terms of performance and en-
ergy efficiency.

While having lower time overhead, undo-logging can eas-
ily result in the propagation of a fault between concurrently
executing tasks, because speculative changes become effec-
tive immediately on shared memory locations. Therefore,
a synchronization mechanism is needed for error recovery.
Conversely, high fault rates can cause important overheads
and it may be more interesting in such cases to use redo-
logging. This would reduce the synchronization costs be-
cause fault propagation can only occur during transaction
commit.
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Using undo- and redo-logging simultaneously can in-
crease the recovery reliability provided by the TM. The ra-
tionale is to use undo-logging for enabling rollback, while
using redo-logging to build a (correct) history of updates
done by the transaction until the error is detected. The in-
troduced overhead is limited to an additional replication of
write operations, while the operand is already in the cache.
Since transaction rollback cannot be guaranteed to be error-
free when operating at low voltage, the history can be used
as FER during the re-execution of the transaction to mask
any faults. Doudalis and Prvulovic [8] proposed combining
undo- and redo-logging to support both bidirectional debug-
ging and error recovery, which can be another research di-
rection for TM. We limit however the scope of this study to
the previously evaluated error recovery scheme and do not
further discuss the usage of undo-logging.

3.2 Executing with TM for Recovery
In order to integrate TM within an error recovery scheme,
the code that requires recovery should be executed within
transactions regardless of whether the original code includes
transactions or not. We name the process of executing a code
within a transaction as transactification. The need for trans-
actification raises two issues: (1) determining the scope of
transactification, (2) choosing the right transaction granular-
ity.

Within the context of transient faults, a TM should be ca-
pable of taking control of the executed code at any time,
since the voltage level can be reduced at an arbitrary mo-
ment. This implies that the scope of transactification should
span the entire code, except code that explicitly declares that
transactification is not needed, e.g., non-critical sections in
approximate computing. If STM is used, all code (not only
applications but also operating system code) running on a
machine should also have a transactional version to switch
to transactional execution at any time. For a hardware TM
(HTM), transactification is done transparently in hardware,
but the size of a transaction is limited. If the size of transac-
tion can be kept small, it is possible to use an HTM alone.
Otherwise a hybrid TM is required, i.e., where the HTM lim-
itations are exceeded, STM is used as a fall-back.

Determining where the transactions start and end during
low voltage operation is also an important issue. Inserting
the executed code inside a single transaction is not feasible,
since this requires an unbounded buffer in order to store the
unmodified states of all modified data (the transaction size
cannot be known in advance). Hence, once a core starts oper-
ating at low voltage we need to execute the code inside back-
to-back transactions with known write-set sizes. It is further
important to take care not to miss errors if there is a delay
between occurrence of a fault and its detection. Otherwise,
an instruction might be already committed even though exe-
cution was faulty. It is possible to introduce delays to ensure
that all the instructions within a transaction completed with-
out errors. At this point, the choice of the transaction granu-
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Figure 1. Bit failure rate of transient faults versus supply
voltage Vdd (log scale) [6]. As Vdd is lowered the bit failure
rate increases exponentially.

larity is critical. Small transactions permit efficient TM im-
plementations (e.g., HTM) but may introduce too many ar-
tificial delays, slowing down the error-free execution. Large
transactions can hide the artificial delays, but make it diffi-
cult for the TM to be efficient (e.g., requiring STM at least
as a fall-back).

4. Analysis
In this section we analyze the feasibility of applying the
aforementioned combinations of error detection with TM-
based error recovery. We are specifically interested how
much we can lower the voltage while still providing high
reliability and only introducing low overheads. We start with
an estimation of the overhead of the TM-based error recov-
ery. Then, we analyze the error detection capabilities (i.e.
provided reliability) under the given supply voltage. Finally,
we analyze the possible energy minimization of combina-
tions of error detection and recovery by considering the pro-
vided reliability of the schemes.

In order to approximate the energy spent for error recov-
ery using redo-logs, we need to estimate the number of fail-
ing transactions. Note that we consider light-weight TMs
that target reliability and are supported by hardware rather
than regular TM with the purpose of concurrency control.
Thus, they do not require code transformation and they can
be committed when it is required. In order to estimate the
number of failing transactions, we need three key parame-
ters (1) the bit failure rate at a given supply voltage level
(2) the size of the architectural structure and (3) the size of
the transactions.

The relation between bit failure rate (i.e., the probability
that a given bit fails) and supply voltage Vdd has previously
been examined by Chishti et al [6] Here, we focus on bit
failure rate caused by transient faults which we present in
Fiure 1. The figure depicts that the decrease of Vdd results in
an exponential increase of the bit failure rate. For instance,
at Vdd=1,000 mV there are practically no failures (bit failure
probability is 10−10) while with Vdd=300 mV the bit failure
probability increases to 1 %.
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size. As transaction size increases, the probability that the
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In this initial study, the architectural structure only con-
siders the register file, since the biggest SRAM structure in
an in-order core is the register file, assuming that caches are
protected by other means. Note that the current trend for
multi-core processors is to put more, simple in-order cores
instead of putting fewer, complex out-of-order cores. Also
in-order cores do not require several buffers utilized in out-
of-order cores such as issue queue, re-order buffer, etc. In
this study, we evaluate a register file with 32 entries of 64-
bit registers. We assume the worst case scenario in which
any bit failure in the register file is harmful for the correct-
ness of the execution. In the following equations we show
the failure probability of the register file pRF . Let pcoreBit

being the bit failure probability (presented in Figure 1).

pRF = 1− (pRFNoFault)

pRF = 1− (1− pcoreBit)
RFSize

For the third parameter, the transaction size, we do not
make any assumption about the type of transactions (i.e.,
lazy/eager conflict detection or hardware/software transac-
tions) since each error detection scheme determines it. Re-
liability purposed transactions can be committed when it is
required, hence, the size of them can be defined based on the
requirements. We calculate the probability that a transaction
has a fault (pTXf ) with the following equation, where pTXr

describes the probability of a reliable transaction and s de-
scribes the size of a transaction.

pTXf = 1− pTXr

pTXf = 1− (1− pRF )
s

We use this equation to show that the energy consump-
tion is highly influenced by the transaction size and present
the results in Figure 2. Obviously, larger transactions have a
higher failing probability when the supply voltage is below
safe margins. For instance, when we use transactions with

100,000 instructions and the Vdd is lower than 800 mV, it is
very likely that all transactions will observe at least one fail-
ure. This graph further shows that the minimum useful Vdd is
500 mV, whereas the transaction consists of only 1 instruc-
tion. This is, however, not realistic and therefore we consider
transactions with 100 instructions for further analysis. This
means that the lowest feasible voltage is 600 mV.

Limiting transaction sizes to 100 instructions is straight-
forward since reliability purposed transactions can be com-
mitted when it is required. As described by Yalcin et al [39],
the size of reliability purposed transactions are less than
1,000 instructions when the write-set is limited to 64 entries.
When TM is used for energy minimization, these transac-
tions should be of finer granularity by using smaller write-
sets.

The granularity of a transaction is one important point,
another point is the reliability of the error detection mecha-
nism. The application reliability (R) depends on the capabil-
ity to detect failed transactions and on the number of transac-
tions in the application. We model the reliability according
to the following equations, where TXR describes the reli-
able transactions, TXF the failed transactions, a the number
of transactions (application size) and notDetected the rate
of failures that are not detected.

R = (TXR)
a

R = (1− (TXF ∗ notDetected))a

The capability of the error detection mechanisms differ.
For instance, triple modular redundancy (TMR) cannot cor-
rect a fault if three copies of the execution are faulty. For
double modular redundancy (DMR), if two register files in
the coupled cores are erroneous in the same bit position,
DMR can not detect the error. For symptom-based error de-
tection, only 35 % of the failures can be detected when the
transactions are short (i.e., 100 instructions) [40]. Similarly,
encoded processing can detect 95 % of faulty transactions
while invariants can detect 97 % of the failed transactions.

In Figure 3, we present the reliability of an application
under the given Vdd when TM-based implementations of
these error detection schemes are used. In this model, we
assume that the application consists of 10,000 transactions.
We also defer benign faults by assuming that any undetected
fault leads to an incorrect result. As it can be seen in the
figure, none of the schemes works when the Vdd is lower
than 500 mV. TMR and DMR have a similar reliability and
support voltages until 600 mV with 100 % reliability and
80 % until 500 mV. Invariant and encoded processing have
a reliability of more than 90 % until the supply voltage
of 800 mV. Symptom-based error detection cannot provide
more than 90 % reliability, even in high performance mode.

Given these results, we evaluate the energy consumption
overhead of the before mentioned mechanisms. In this sim-
plistic model, we ignore the energy spent for comparing the
write-sets. Also, we assume that the redundant executions
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Figure 3. The reliability of the application according to
supply voltage under several error detection schemes.

are scheduled to different cores to detect the intermittent
faults as well. One can argue that redundancy can be ac-
complished with less energy overhead by utilizing Simul-
taneous Multi-Threading but we did not explore this in our
model. The typical energy consumption is approximated as
the product of capacitance, voltage and frequency with the
execution time (T):

E ≈ CL × V 2 × f × T

With DMR the energy consumption doubles EDMR = 2 ×
E, with TMR it is triplicated ETMR = 3 × E. Encoded
Processing has an overhead factor of 3 (EEP = 3 × E)
since, for example, an encoded addition takes three times as
long as an unencoded one [35]. Invariants present, on aver-
age, 10 % energy overhead EI = 1.1×E. Symptom-Based
detection does not present a perceptible error detection over-
head ES = E.

For error recovery, we assume that all evaluated mech-
anisms use the abort mechanism in a lazy data version-
ing transactional memory system, except TMR and invari-
ants, which use forward recovery. The main overhead comes
from the re-execution of faulty transactions. However, af-
ter aborting the transaction, another failure may occur in
re-executing the transaction. Thus, assuming that the fail-
ing probability of a transaction is pTXf and energy required
for re-execution is ETX ; we calculate the energy spent for
recovery (ERecovery) with the following equations:

ERecovery =ETX ∗ pTXf + ETX ∗ pTXf ∗ pTXf

+ETX ∗ pTXf ∗ pTXf ∗ pTXf + ...

ERecovery = ETX ∗ (pTXf + (pTXf )
2 + (pTXf )

3 + ...)

ERecovery = ETX ∗ pTXf ∗ (1/(1− pTXf ))

In Figure 4, we calculate the energy consumption of each
scheme for error detection and error recovery under the cal-
culated failure rate of the given Vdd. We normalized each

0

0.5

1

1.5

2

2.5

3

3.5

1000 900 800 700 600 500 400 300

N
o

rm
a

li
ze

d
 E

n
e

rg
y

Normalized Energy
Base Dual Modular Redundancy Triple Modular Redundancy

Symptom-Based Encoding Invariants

Supply Voltage (Vdd)

Figure 4. Energy reduction of each error detection scheme.
Energy consumptions are normalized to the base case where
the processor operates with 1,000 mV supply voltage.

value to the base case, which executes in 1,000 mV sup-
ply voltage without any error detection and recovery. We
omit the values where the schemes have zero reliability. At
Vdd=1,000 mV one can see the error detection overhead, as
the error rate is low.

Applications that require a reliability level close to 100 %
(i.e., mission critical applications) should pay the error de-
tection overhead by using either TMR, DMR, encoding or
invariants and operate on high voltage levels. The symptom-
based scheme can reduce the energy consumption by 27 %
for Vdd=900 mV and provides 77 % reliability. Obviously,
this scheme cannot be used for mission-critical applications.
Similarly, invariants reduce the energy consumption by 44 %
when Vdd=800 mV by providing 95 % application reliabil-
ity. DMR reduces energy by 56 % when Vdd=600 mV and
provides a reliability level close to 100 %. After 500 mV,
DMR requires several rollbacks, thus, it increases the en-
ergy consumption drastically. TMR, on the other hand, does
not execute rollbacks and the result is found by a majority
voter. Thus, it can provide 63 % energy reduction by provid-
ing 80 % reliability when Vdd=500 mV.

Encoded processing cannot reduce the energy consump-
tion as much as the other schemes due to its high error detec-
tion overhead presented by the software. We argue that hard-
ware support for encoding can reduce this overhead drasti-
cally.

We showed that the combination of error detection and
TM-based error recovery can be used when lowering volt-
age. The decision on which schemes should be selected is
dependent on the required level of reliability (i.e. if applica-
tions are mission-critical or not) and the targeted supply volt-
age. A possible solution would be to provide all mechanisms
and decide adaptively based on hints by the application (e.g.,
configuration), which of the mechanisms to use.
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5. Conclusion
To improve the energy-efficiency of modern CPUs, one can
reduce the supply voltage of cores. Reducing the supply volt-
age increases however the likelihood for wrong executions
of programs. In this paper, we proposed to use transactional
memory (TM) for rolling back the effects of wrong execu-
tions. To reduce the energy consumption, one needs an error
detection scheme that has both a sufficient coverage and a
low overhead. We discussed multiple error detection alter-
natives. Based on our evaluation, we conclude that one can
reduce the energy consumption of CPUs—in particular, if
we have efficient hardware support for TM and for error de-
tection. An open question remains with respect to how effec-
tively protect the TM itself against transient errors caused by
low supply voltage.
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ANBDmem-Encoding: Detecting Hardware Errors in Soft-
ware. In Computer Safety, Reliability, and Security, volume
6351. Springer Berlin / Heidelberg, 2010.

[31] T. J. a. Slegel. IBM’s S/390 G5 Microprocessor Design. IEEE
Micro, 19:12–23, 1999.

[32] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery. In Pro-
ceedings of the International Symposium on Computer Archi-
tecture, pages 123–134, 2002.

[33] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.
Macaco: Modeling and analysis of circuits for approximate
computing. In Proceedings of the International Conference on
Computer-Aided Design, pages 667–673. IEEE Press, 2010.

[34] N. J. Wang and S. J. Patel. ReStore: Symptom-based soft error
detection in microprocessors. TDSC, 3:188–201, 2006.

[35] U. Wappler and M. Müller. Software protection mechanisms
for dependable systems. In Proceedings of the conference on
Design, automation and test in Europe, pages 947–952. ACM,
2008.

[36] A. Wood, R. Jardine, and W. Bartlett. Data integrity in HP
NonStop servers. In Workshop on SELSE, 2006.

[37] K. L. Wu, W. K. Fuchs, and J. H. Patel. Error recovery in
shared memory multiprocessors using private caches. IEEE
Trans. Parallel Distrib. Syst., 1(2):231–240, Apr. 1990.

[38] G. Yalcin, O. Unsal, A. Cristal, I. Hur, and M. Valero.
FaulTM: Fault-Tolerance Using Hardware Transactional
Memory. In Workshop on Parallel Execution of Sequential
Programs on Multi-Core Architecture PESPMA, 2010.

[39] G. Yalcin, O. Unsal, A. Cristal, and M. Valero. FaulTM-multi:
Fault Tolerance for Multithreaded Applications Running on
Transactional Memory Hardware. In Workshop on Wild and
Sane Ideas in Speculation and Transactions, 2010.

[40] G. Yalcin, O. Unsal, A. Cristal, I. Hur, and M. Valero. Symp-
tomtm: Symptom-based error detection and recovery using
hardware transactional memory. In Parallel Architectures
and Compilation Techniques (PACT), International Confer-
ence on, pages 199–200. IEEE, 2011.

[41] D. Yoon and M. Erez. Memory mapped ecc: low-cost error
protection for last level caches. In ACM SIGARCH Computer
Architecture News, volume 37, pages 116–127. ACM, 2009.

[42] Y. Zhang and K. Chakrabarty. Fault recovery based on check-
pointing for hard real-time embedded systems. In Defect and
Fault Tolerance in VLSI Systems, Proceedings. 18th IEEE In-
ternational Symposium on, pages 320–327. IEEE, 2003.

9 2013/3/3


