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Abstract
Transactional memory (TM) is a promising technique that simpli-
fies parallel programming by supporting atomic and isolated exe-
cution of code sections. To provide robust performance and fair-
ness guarantees, however, TM must dynamically adjust the degree
of concurrency among transactions. To design an efficient concur-
rency controller for TM, critical system information, such as de-
pendencies among transactions and current utilization level of the
system, should be provided in an accurate and inexpensive manner.
However, efficiently obtaining such information is often the most
challenging design problem.

To address the issue, we have looked at hardware features that
can be used to characterize transactional behavior. In particular,
we identify NACKs, which are readily available in several TM
designs to handle conflicts between transactions, as the mechanism
to efficiently collect the transactional information of the system.

In this paper, we propose three novel, efficient use cases of
NACKs for TM systems to demonstrate the potentials of utiliz-
ing NACKs intelligently: 1) accurate deadlock detection, 2) de-
pendency tree construction, and 3) carrier sensing. We also de-
scribe a prototype design that extends the baseline TM systems to
support the proposed techniques. To evaluate the effectiveness of
such approach, we use the proposed techniques to implement an
enhanced concurrency controller that performs aggressive stalling,
dependency chain cutting, and exponential backoff with overshoot
avoidance. Our preliminary results demonstrate that the proposed
techniques can significantly improve the performance of hardware
and hybrid TM systems (up to 21.5%).

1. Introduction
Transactional memory (TM) [15] surfaced as a promising technol-
ogy to address the difficulties of parallel programming. TM allows
programmers to declare certain code sections as transactions that
execute in an atomic and isolated way with respect to the other code
sections. Controlling the concurrency among those transactions
then becomes the responsibility of the system. Previous researches
proposed TM implementations using hardware [1, 4, 13, 20], soft-
ware [11, 14, 22], and hybrid [7, 9, 19, 23] techniques, and major
vendors plan to implement TM in mass-market products [10, 16].

For a TM system to provide robust performance and fairness
guarantees, the system must implement an efficient concurrency
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control. At a high level, concurrency controllers dynamically adjust
the degree of concurrency within the system to increase the num-
ber of successful transaction commits. Specifically, recent work
has studied on contention management techniques [12, 24] and
adaptive scheduling [2, 3, 29]; they may be implemented in hard-
ware [3, 29] or software [2, 12, 24].

To design an efficient concurrency controller, however, the con-
troller should be provided with low-level run-time information,
such as dependencies among transactions and utilization level of
the system. However, obtaining such information in an accurate and
inexpensive manner is often the most challenging factor in design-
ing a TM system [5]. In particular, to facilitate low-cost TM im-
plementations [10, 16], techniques that leverage existing hardware
features to characterize transactional behavior would be necessary.

We notice that several TM designs utilize the underlying NACK
coherence mechanism to handle conflicts between transactions [7,
20]; when a transaction (i.e., defender) receives a conflicting co-
herence message from another transaction (i.e., attacker), it sends
a NACK to ensure serializability. The attacker then would stall un-
til the conflict is resolved. Therefore, in essence, NACKs can be
viewed as an accurate indicator to denote the dependencies between
transactions and the utilization level of the system.

Although there have been researches on utilizing NACKs to
support nonbusy waiting [30] and to implement conservative dead-
lock avoidance [20], little work has been done on the efficient use
of NACKs to obtain transactional dependency information. In this
paper, we suggest that NACKs can be readily used to construct such
dependency information, and that the information can then be used
to implement an efficient TM concurrency control.

To demonstrate the effectiveness of the intelligent uses of
NACKs, we propose three novel, efficient use cases of NACKs for
TM systems: 1) accurate deadlock detection, 2) dependency tree
construction, and 3) carrier sensing. Due to the imprecise nature,
conservative deadlock avoidance schemes on TM [1, 20] have to
admit false positives. Accurate deadlock detection, on the contrary,
precisely detects deadlock only when it actually occurs. This allows
to implement a more aggressive stalling scheme. On the other hand,
constructing a dependency tree reveals the degree of dependency
for each transaction (i.e., how many transactions are stalling due to
the transaction, either directly or indirectly). If the dependency on a
transaction is higher than a threshold, the transaction might as well
be aborted to let other transactions make progress, which would
result in increased throughput. Lastly, carrier sensing enables the
TM concurrency controller to estimate the current utilization level
of the system and to dynamically adapt the execution.

The specific contributions of this work are:

• We propose three efficient use cases of NACKs for TM systems
that include accurate deadlock detection, dependency tree con-
struction, and carrier sensing. We also describe the design of
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Figure 1. An Unnecessary Abort of a Transaction due to Conser-
vative Deadlock Avoidance.

hardware and software components to enhance TM systems to
enable these use cases.

• Using the proposed techniques, we implement an enhanced
concurrency controller that performs aggressive stalling, depen-
dency chain cutting, and exponential backoff with overshoot
avoidance.

• We provide our preliminary results to demonstrate the perfor-
mance potentials of the NACK use cases. We show that the pro-
posed techniques can improve the performance of both hard-
ware and hybrid TM systems.

The rest of the paper is organized as follows. Section 2 discusses
the three efficient use cases of NACKs. Section 3 describes the de-
sign of hardware and software components, and Section 4 provides
motivating results. Section 5 reviews related work. Finally, Sec-
tion 6 concludes and discusses future research direction.

2. Efficient Use Cases of NACKs for TM
In this section we propose the three use cases of NACKs: accu-
rate deadlock detection (Section 2.1), dependency tree construction
(Section 2.2), and carrier sensing (Section 2.3).

2.1 Accurate Deadlock Detection
For hardware TM systems with eager version management and pes-
simistic conflict detection (eager HTM systems) [20, 28], perfor-
mance is more susceptible to conflict resolution policy [5]. A com-
monly used policy for this type of implementations is to stall the at-
tacker while performing conservative deadlock avoidance [4, 20].
In this policy, if a transaction sends a NACK to a logically older
transaction, it sets its possible cycle flag. If the transaction re-
ceives a NACK from another logically older transaction, it aborts
because it could induce deadlock.

Due to the conservative nature of this policy, in some cases,
transactions that do not actually cause deadlock should still be
aborted. When frequent, these false positives may eventually de-
grade performance.

Figure 1 illustrates such an example. After T2 sends a NACK to
T1, which is logically older, it sets its possible cycle flag. When
T2 receives a NACK from another logically older transaction, T3,
T2 must conservatively abort to avoid a possible deadlock scenario,
even though there is no actual deadlock in the system. If T2 were
able to commit successfully, this unnecessary abort would clearly
degrade the performance.

To eliminate the performance degradation due to conserva-
tive deadlock avoidance, we need an accurate deadlock detection
(ADD) mechanism. A common method to implement an ADD
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Figure 2. Cascaded Stalls of Transactions.

mechanism is to construct a wait-for graph (WFG) that encodes
the dependency information in the system; if a cycle is detected in
WFG, there is a deadlock. And to construct a WFG, an accurate de-
pendency indicator is required to track the system-wide, up-to-date
dependency information.

NACK messages can be used as such an indicator, since they
essentially represent dependencies among transactions. Simply, if
T1 receives a NACK from T2, it indicates that T1 would attempt
to wait for T2. Hence, an ADD mechanism can be built on top of
NACK messages.

If there exists an ADD unit in the system that can exactly tell
whether introducing a new dependency (i.e., T1 → T2 in this
example) can induce deadlock or not, the system would abort a
transaction only when definitely necessary, and allow transactions
to stall more aggressively. This reduction in unnecessary aborts will
result in improved performance.

2.2 Dependency Tree Construction
For eager HTM systems [20, 28], acquiring an exclusive access
to a memory (cache) block amounts to acquiring a lock. Under
such systems, attacker stalling policy [20] can form a potentially
large dependency tree where one transaction may make many other
transactions stall, either directly or indirectly.

Figure 2 depicts such a scenario. In this case, Transaction 4
(T4), which does not have a direct dependency on T2, still has to
indirectly stall for T2 since T3, which T4 has a direct dependency
on, is stalling for T2. This dependency transitively propagates
through the dependency tree, and the transaction positioning at the
root of the (sub)tree in effect appears to hold all the memory blocks
that its dependents have acquired.

The most obvious negative effect of stalling a transaction with
high degree of dependency is that it also stalls all the dependents,
regardless of actual dependency. However, the more subtle effect
is that the other transactions not yet joined the dependency tree are
soon likely to join the tree as well, which would force the entire
system into high congestion.

In this sense, to improve the overall performance, it would be
better to abort the highly depended transaction early in time. To
accomplish this, the underlying contention management scheme
should be provided with the dependency tree to make an informed
decision whether to stall or abort a transaction.

For systems that already implement NACKs, the necessary de-
pendency information can be easily constructed without the signif-
icant modification of the existing coherence protocol; each NACK
contains the peer-to-peer information as to which transaction is
stalling for who, and by collecting the information we can con-
struct a coherent view of the dependency. Thus formed dependency
information can be used to implement a flexible contention reso-
lution scheme that would determine whether to stall or abort an
attacking transaction based on the dependency degree.
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Figure 3. High-Level Overview of Accurate Deadlock Detection.

2.3 Carrier Sensing
To provide robust performance across a wide range of workloads,
TM systems must accurately detect under/overutilization of the
system, and dynamically adjust the concurrency level according to
the observed degree of contention [29].

More specifically, recent work utilized abort [29] or commit [2]
rates to measure the degree of contention in the system. While
these metrics can be effective, they are fundamentally reactive in
the sense that they provide a decision point only after a certain
number of repeated transactional aborts or commits have occurred.
In short, they do not allow the concurrency control to take effect at
the moment of conflict detection. Moreover, they cannot deal with
fine-grain problems such as underutilization due to a long backoff.

Researchers in communication and networking areas have dealt
with similar problems for years, and adopted the carrier-sensing
technique as one of the key techniques for dynamic concurrency
control in communication systems [17]. In this approach, each
transmitter senses a shared medium, and probabilistically sends a
packet, only if the medium is idle.

Similarly, we can view concurrent transactions as competing
over a shared medium/resource (e.g., ownership over shared mem-
ory objects). In this view, NACKs can be utilized as an indicator to
estimate the current utilization level of a TM system: high NACK
count indicate high contention, thus utilization, and low NACK
count low utilization. With the information, the controller could ef-
ficiently adjust the concurrency level. As an example, shown below,
a TM concurrency control routine could use the number of snooped
NACK messages per period to dynamically control the number of
active threads in the system.

if(num_nacks_per_period >high_threshold ){
decrease_number_of_active_threads ();

}
else if(num_nacks_per_period <low_threshold ){

increase_number_of_active_threads ();
}

In Section 4.4, we discuss a technique that incorporates carrier
sensing to eliminate the underutilization problem of exponential
backoff.

3. System Design
In this section we describe how the proposed use cases (Section
2) can be practically implemented on a TM system. Hardware and
hybrid TM designs that utilize hardware NACKs as their conflict
detection mechanism could readily implement our design.

3.1 Accurate Deadlock Detection
Figure 3 shows a high-level overview of accurate deadlock de-
tection (ADD). For simplicity, we assume a broadcast-based in-
terconnection network. However, distributed implementations for
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Figure 4. The Wait-For Table and the Resulting Graph.

bool reduceGraph(G) {
// flag is set when G is updated
bool flag=remove_all_sources_and_sinks(G);
return flag;

}

bool detectDeadlock(G) {
reducible=false;
do {
reducible=reduceGraph(G);

} while(reducible)
if (G.size ()==0) {
// empty after the reduction process
// so, there is no deadlock
return false;

} else {
// non -empty after the reduction process
// so, there is deadlock
return true;

}
}

Figure 5. Deadlock Detection Algorithm.

directory based systems are also possible. We also assume one ac-
tive transaction per processor, and the information on transactional
events such as commit and abort are broadcasted.

In our design, there exists a centralized arbiter that maintains
the dependency information among processors, and arbitrates when
there is a conflict. The arbiter snoops all coherence messages and
updates its wait-for table (W ) when it snoops a NACK message, to
build the up-to-date dependency information of the system.

Figure 4 shows an example of W and its resulting wait-for
graph (WFG). Row i of W encodes processors on which Pi is
waiting for. Column j represents the processors that Pj has caused
to stall. For example, W (i, j) is set when attacking processor i is
stalling for defender Pj . When Pi commits or aborts, column i and
row i are cleared. Each node in WFG represents a processor and
edges between the nodes represent the wait-for relationship — head
denotes the defender, and tail denotes the attacker. The problem of
detecting any deadlock in the system is equivalent to the problem
of finding any cycle in the corresponding WFG [26]. For example,
the WFG in Figure 4 has a cycle (P0 → P2 → P1 → P0) and
equivalently, there is a deadlock in the system.

When the arbiter snoops a new NACK message, it detects a
deadlock in the system by running the deadlock detection algorithm
shown in Figure 5 over W . At each iteration of the main loop, the
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Figure 6. Propagation of Dependency Information.

algorithm attempts to reduce the WFG by removing all source (i.e.,
no incoming edges) and sink (i.e., no outgoing edges) nodes and
their associated edges from the graph. If there is any update at
an iteration, it proceeds to the next iteration. If not, it terminates
the main loop. Note that the runtime complexity of the algorithm
is O(P ), where P is the number of processors, since at least one
node is removed from WFG at each reduction step, if there is any
update. After the entire reduction process, if the resulting WFG is
non-empty, it indicates that there is at least one cycle in WFG and
the algorithm reports that there is deadlock in the system. Then, the
arbiter sends a NACK message to an attacking processor to make
it abort. If the resulting WFG is empty, there is no deadlock in the
system and the attacking processor can stall.

There are several hardware implementations that detect dead-
lock in the system in a fast and efficient way [25, 27]. In particular,
the data structure and logic of our arbiter are similar to the dead-
lock detection unit [25] that was implemented in hardware in an
area- and delay-efficient way. In addition, since the deadlock de-
tection process is not on the performance critical path (i.e., any
delay in deadlock detection can be considered as additional stalling
cycles), we believe the arbiter can be implemented with reasonable
hardware complexity. However, we do plan to explore the hardware
complexity and overhead in a later version of this work.

3.2 Dependency Tree Construction
For a system that utilizes NACKs to implement transactional con-
flict detection, the dependency tree information can be constructed
in a distributed fashion. Similar to Section 3.1, we assume that the
begin, abort, and commit of a transaction is broadcasted through a
shared interconnect. We also assume that only one active transac-
tion is supported per processor.

Each processor maintains a bit vector where each bit denotes
a processor in the system. This bit vector is flash-cleared when a
transaction begins, aborts, or commits.

To maintain the direct dependency information, a processor sets
the corresponding bit to 1 whenever it sends a transactional NACK
to another processor. And when a transaction abort is broadcasted
over the interconnect, each processor clears the corresponding bit
if it is set to 1.

To propagate indirect dependency information, each processor
then includes this bit vector in its coherence request messages. For
example, if an attacking transaction tries to acquire a memory block
that is held by a defender, the attacking processor would send its bit
vector along with the exclusive ownership request.

Figure 6 depicts the dependency information propagation in the
context of Figure 2. In particular, the figure captures the moment
when T4 is stalling for T3, and T3 is requesting an ownership over
a block held by T2. Note that the least significant bit of T3’s bit
vector is set to 1 to denote that T4 is stalling for T3.

When the defender processor decides to NACK the attacker,
it would first set the corresponding bit to 1 in its bit vector. The
defender would then perform a bitwise OR between its bit vector
and the attacker’s bit vector, to store the new value in its own bit
vector. The defender will then send a NACK to the attacker.

Simulated System Settings

CPU
16 x86 cores
Single-issue, in-order
Non-memory IPC=1

Per Core L1 Cache 4-way unified, 64 KB
1-cycle hit latency

Shared L2 Cache 4-way unified, 8 MB
10-cycle latency

Memory 100-cycle latency
Interconnect Shared bus, 6-cycle arbitration latency

HTM Settings
Version Management Eager
Conflict Detection Pessimistic

SigTM Settings
Signature Register 2048 bits
Hash Function Permuted cache line address

Table 1. Simulation Settings.

Note that the bit vector now represents the transitive dependency
relation. Again, in Figure 6, we can see that the resulting bit vector
correctly depicts that both T3 and T4 are stalling for T2. Counting
the number of bits set would give the number of direct/indirect de-
pendents that are stalling for a particular transaction. A transaction
could then utilize this information to decide whether it should stall
or abort.

3.3 Carrier Sensing
To implement optimizations using carrier sensing, a hardware per-
formance monitoring counter per processor and its associated in-
structions are required. The performance monitoring counter sim-
ply counts the number of snooped NACK messages. In addition,
two instructions are required to read or reset the counter. Since
many modern commercial processors provide a variety of perfor-
mance monitoring units and software interface [8], in most cases
the carrier-sensing functionality can be included just by adding an
additional performance monitoring event.

4. Motivating Results
Section 4.1 describes the simulation framework we use in this
work. We implemented the techniques described in Section 3 on
top of this simulator. Sections 4.2–4.4 provide our preliminary
performance results.

4.1 Methodology
For our experiments, we use an execution-driven simulator. Table 1
specifies the simulated machine. Our simulation framework models
a multi-core system based on x86. The processor model assumes
an IPC of 1 for all non-memory instructions, but we do model
all the memory hierarchy timings and congestions through event
queueing.

Similar to [20], our HTM system uses eager version manage-
ment and pessimistic conflict detection. Private L1 caches provide
the necessary TM bookkeeping functionalities to implement an
HTM system. The baseline conflict resolution policy is to stall the
attacker with conservative deadlock avoidance; the attacking trans-
action stalls for a memory block unless it risks a possible deadlock.
The stalling mechanism is implemented by the defender sending a
NACK message to the attacker.

To study the effectiveness of the carrier-sensing technique,
we also experiment with a hybrid TM system that models eager
SigTM [6]. The hybrid TM also utilizes the NACK mechanism to
handle conflicts between transactions. The hardware signature reg-
ister is 2048 bits, and we use permuted cache line address as the
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Figure 7. Execution Time Breakdown of Genome Benchmark.

hash value. For performance comparison, we implement both ran-
domized linear and exponential backoff as contention management
schemes.

For all the experiments, we use 16 processors. However, since
the performance of larger scale systems would be more suscepti-
ble to the effectiveness of TM concurrency control, we expect the
proposed techniques to be more beneficial on such systems. Finally,
we use Genome and Kmeans benchmarks from the STAMP bench-
mark suite [6] and a Hashtable benchmark.

4.2 Accurate Deadlock Detection: Aggressive Stalling
To showcase the usefulness of accurate deadlock detection (ADD),
we implement aggressive stalling with ADD on an HTM, and com-
pare the performance against stalling with conservative deadlock
avoidance (CDA). Figure 7 shows the results with Genome bench-
mark, where the execution time with 16 processors is normalized
to the sequential execution time. Each bar is broken down into 1)
time for useful instructions and cache misses (Busy), 2) idle and
synchronization time, 3) time spent for commit, and 4) time spent
on aborted transactions (Violation).

As shown in the figure, the main performance benefit is from the
reduction in violation cycles. Our results indicate that aggressive
stalling with ADD reduces the number of aborted transactions by
20.5%, compared to stalling with CDA. This means that allowing
more transactions to stall using ADD is beneficial, since many of
them can eventually reach to a successful commit. Overall, when
compared to stalling with CDA, aggressive stalling with ADD
improves the performance of Genome application by 9.9%.

4.3 Dependency Tree Construction: Dependency Chain
Cutting

We model the dependency tree construction technique described in
Section 3.2 on an HTM system. To utilize this information, we also
implement a dependency chain cutting mechanism in hardware.
Under this scheme, an attacking transaction is aborted if it 1)
receives a NACK from an older transaction, and 2) it has more than
a designated number of dependents. For the rest of the cases the
attacker would stall unless it risks a possible deadlock.

We use the Hashtable microbenchmark to compare perfor-
mance. In the benchmark, concurrent transactions insert data into a
shared hash table. The hash table is designed as buckets of linked
lists, and each transaction performs a predefined number of data
insertions. The benchmark input is constructed to cause high con-
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tention among transactions. We measure the execution time taken
to successfully commit a thousand transactions.

Figure 8 shows the performance of the dependency chain cut-
ting method over varying chain cut thresholds. The execution time
is normalized to the baseline. In the figure, baseline denotes the
case where we stall the attacker transaction unless it risks a poten-
tial deadlock. cutThreshold=1 represents the case where we cut
the dependency chain by aborting the attacker if it has at least 1
dependent. cutThreshold=2,4 represent the case where we abort
the attacking transaction with at least 2 and 4 dependents, respec-
tively. baseline could be considered as a special case of chain cut-
ting where the cut threshold is set to infinity.

For this particular benchmark, cutThreshold=1 gives the best
performance improvement; compared to the baseline, the speedup
is 10%. cutThreshold=2 and cutThreshold=4 schemes bring
about 7% and 2% speedup, respectively. The diminishing perfor-
mance improvement over the increasing threshold is due to the fact
that the actual occurrence of dependency cutting reduces when we
increase the threshold.

For the same benchmark, Figure 9 shows the breakdown of
aborts into those induced by conservative deadlock avoidance, and
those by proactive dependency chain cutting. When the cut thresh-
old is 1, there are 159 chain cuts in total. The cut instances are
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void OrigExponentialBackoff(numRetries ){
stall=pow(2,min(numRetries ,M));
for(i=0;i<stall;i++){
// idle

}
}

void ExponentialBackoffWithCS(numRetries ){
stall=pow(2,min(numRetries ,M));
for(i=0;i<stall;i++){
// periodically senses the medium
if(i%period ==0){
numNacksInPeriod=ISA_READ_NACK_CNT ();
if(numNacksInPeriod <low_threshold ){
// if the medium is underutilized.
// terminate the backoff early
break;

} else {
ISA_RESET_NACK_CNT ();

}
}

}
}

Figure 10. Baseline Exponential Backoff and Exponential Backoff
with Carrier Sensing.

reduced to 78 and 28 for thresholds 2 and 4, respectively. As less
dependencies are cut, performance converges back to the baseline.

It is also important to point out that the overall performance
shows high correlation to the number of aborts, and that the chain
cutting approach actually results in reduced number of aborts. In
plain sight, we could expect the chain cut method to generate more
aborts, since we are injecting aborts even when we do not risk a
deadlock. However, as can be seen from Figure 9, the artificial in-
jection of aborts actually results in reduced number of total aborts.
This can be attributed to the fact that the proactive dependency cut-
ting prevents the system from entering the highly congested mode
of operation.

4.4 Carrier Sensing: Exponential Backoff with Overshoot
Avoidance

To demonstrate the usefulness of the carrier-sensing technique, we
apply it to eliminate the underutilization problem (i.e., overshoot-
ing of the backoff length) of exponential backoff (EB). EB is a
widely used contention management scheme for TM systems [24].
While EB is in general more effective than linear backoff (LB) on
workloads with long and highly conflicting transactions (since it
quickly escapes from high contention), it can suffer from a tempo-
ral underutilization, as it rapidly increases the backoff length.

To eliminate this problem, we propose an exponential backoff
scheme with carrier sensing (EB-CS). Figure 10 compares EB and
EB-CS. In the main loop of backoff, EB-CS periodically senses
the utilization of the system and early terminates the backoff if it
detects underutilization. With this approach, EB-CS can eliminate
the overshooting of the original EB while keeping the benefits of
EB in quickly escaping high contention.

We implement EB-CS on eager SigTM, and measure the per-
formance using Kmeans benchmark. For this experiment, we use
1024 for period and 3 for low threshold. Figure 11 shows the
result. In addition to the segments described in Section 4.2, each
bar has additional segments such as the time executing read barri-
ers (RB) and write barriers (WB), and the time spent in backoff. In
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Figure 11. Execution Time Breakdown of Kmeans Benchmark.

the figure, EB and EB-CS present the execution time of the two EB
implementations. For completeness, we also include the execution
time with linear backoff (LB).

Compared to EB, EB-CS improves the performance by 21.5%.
The performance improvement is mainly from the reduction in
Idle/Synch and Backoff cycles. With EB, there are several trans-
actions that suffer from overshooted backoff. Since it causes a tem-
poral load imbalance in the system, EB leads to high Idle/Synch
cycles. In contrast, with periodic carrier sensing, EB-CS eliminates
the overshooting problem by early terminating the backoff when
underutilization is detected.

When comparing LB against EB, we observe that LB generally
outperforms EB on Kmeans, since the workload exhibits relatively
low contention and the majority of its transactions are short [6].
EB-CS, on the contrary, manages to provide similar performance
by eliminating the overshooting problem of EB.

5. Related Work
The effects of contention on the performance of TM systems have
been studied extensively [2, 5, 14, 24, 29, 30]. Especially, Her-
lihy et. al. [14] propose a contention manager based approach on
STM where a software conflict resolution routine performs local-
ized, peer-to-peer conflict resolution. Bobba et. al. [5] delineate
performance pathologies in HTM systems, and discuss possible so-
lutions for reducing the contention. Regardless of the implementa-
tion, these approaches usually boil down to two major issues: 1)
obtaining the dependency information, and 2) enforcing a priority
mechanism. In this paper we show that NACKs can be effectively
used to obtain such dependency information.

Under the TM context, the use cases of NACKs have been lim-
ited to stalling an attacking transaction [20, 21, 28]. While Moore
et. al. utilize NACKs to implement a conservative deadlock avoid-
ance policy [20], little work has been done on how TM concurrency
controllers can effectively exploit the information available from
NACKs. This paper discusses novel use cases on utilizing NACKs
in the context of contention management: for accurate deadlock de-
tection, dependency tree construction, and carrier sensing.

Koskinen and Herlihy [18] also discuss an efficient deadlock
detection scheme and its use on the improvement of STM per-
formance. However, the implementation purely relies on software
mechanisms for dependency information propagation and deadlock
detection. Our paper builds on this approach by utilizing hardware
NACK messages to construct a deadlock detection mechanism.
This mechanism can be implemented on a wide range of hardware
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and hybrid TM systems that utilize NACKs. Moreover, we describe
a hardware structure that can efficiently calculate the existence of a
deadlock, given the wait-for graph.

Utilizing NACKs for contention resolution has another benefit
in the sense that we can design more proactive contention managers
or runtime schedulers. Compared to those approaches that utilize
the indirect outcome of contention as the concurrency feedback
[2, 29], NACK based approaches can be more effective, because
the conflict resolution can take place at the exact moment when a
conflict has been detected.

6. Conclusions and Future Work
Obtaining the transactional behavior information in an accurate and
efficient fashion allows to construct an effective concurrency con-
troller. In this paper, we identified that NACKs readily available in
several TM designs can efficiently provide the critical system infor-
mation, such as dependencies among transactions and the current
utilization level of the system.

Specifically, we proposed the three efficient use cases of NACKs
for TM systems: 1) accurate deadlock detection, 2) dependency
tree construction, and 3) carrier sensing. Unlike conservative dead-
lock avoidance, accurate deadlock detection precisely detects the
deadlock in the system, without any false positives. Dependency
tree construction enables each transaction to track its degree of
dependency. Carrier sensing can estimate the current utilization
level of the system. We described our prototype design that extends
hardware and hybrid TM systems to support the three proposed
techniques. We also used the proposed techniques to implement an
enhanced concurrency controller that performs aggressive stalling,
dependency chain cutting, and exponential backoff with overshoot
avoidance. Our preliminary results showed that the baseline TM
systems readily benefit from the proposed techniques (up to 21.5%
speedup).

As our future work, we plan to study the effectiveness of the
proposed techniques with a variety of TM workloads on a larger
scale system. We also plan to investigate the additional hardware
complexity and overheads required to implement the proposed
techniques in more detail.
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